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Charm-flavour physics
● Flavour physics of the up-type: complementary, but less well known 

than down-type strange and bottom sectors
– QCD @ intermediate regime mK << mc << mb [consolidated theoretical tools for 

the two extrema, χPT3 and HQET; 1/mc converges more slowly]

– EW sector largely uncharted; more effective GIM mechanism: potential for 
identifying BSM

sb : ε
K

: |Vub|, α, β, γ, 
Δmd, Δms
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● CKM: a single CP-odd phase 
responsible for CPV phenomena 
in all flavour sectors of the SM

Luiz VALE SILVA – Direct CPV in charm



  

2Measurement of direct CPV

● Major discovery by LHCb in 2019:

● Bounds in many other cases: π+π- and K+K- 
(individually), π0π0, π+π0, KSKS, K+KS, etc.

Present exp. 
sensitivity to 
penguins

Future exp. 
sensitivity to 
penguins

Direct CPV from “penguin topologies”

D to KK asym. D to ππ asym.

Luiz VALE SILVA – Direct CPV in charm

● Much progress is expected in this decade: 
LHCb Upgrade I and Belle II; about 3-fold 
better sensitivity to CPV in ΔACP

[LHCb, BABAR, Belle, ...]

LHCb UI
LHCb UII

[I will neglect indirect CPV throughout this talk]



  

3SM description of direct CPV
● Theory has to match experimental progress

● We need both strong-phase (=δ) and weak-phase (=ϕ) differences
● HERE: discussion of non-perturbative QCD effects, their extraction 

from data, and physical impact on direct CPV in the charm sector

current-current operators penguin operators

(CKM factors)

μ~2 GeV for charm
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[Buchalla, Buras, 
Lautenbacher ‘95]

[see also: Brod, Grossman, Kagan, Zupan ‘12; Khodjamirian, Petrov ‘17; Soni ‘19; 
Grossman, Schacht ‘19; Chala, Lenz, Rusov, Scholtz ‘19; Schacht, Soni ‘21; ...]

amplitude moduli



  

4Rescattering in weak decays
● Strong and weak dynamics factorize (first order in weak interactions); 

strong dynamics is blind to specifics of weak interactions
● Rescattering among light stable final-state particles produces a CP-

even (strong) phase; elastic limit: Fermi-Watson theorem

● Relate dispersive and absorptive parts based on analyticity of 
rescattering amplitude (Mandelstam variables)

D
K
K π

π π
πCharm-meson

      decays:

Strong dynamics: ≈isospin, 
flavour and CP conserving

Weak vertex: 
source of CPV

or K K
Dispersion Relation (DR) for Ω

L. VALE SILVA

(dispersive)
(absorptive)



  

5Omnes factor
● Elastic limit, explicit solution of the integral equation:

   Explicit solution to the DR
(isospin-I, total angular mom.-J),

once-subtracted @ s
0
:

● Phase-shift and Omnes factor embody the effects of rescattering in the 
amplitudes of weak decays

● Polynomial ambiguity (analytical properties unchanged): requires 
some physical input [e.g., in K to ππ, employ χPT3]

    Omnes factor Ω: 
behaviour dictated by δ

Fermi-Watson theorem

polynomial ambiguity 
= subtraction constant
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[Muskhelishvili ‘46; Omnes ‘58]

[Pallante, Pich ‘99 ‘00; 
Pallante, Pich, Scimemi ‘01; 
Gisbert, Pich ‘17]



  

6Two-channel analysis of rescattering

● Inelastic case: set of integral 
equations (DRs) related by unitarity; 
no explicit solution known, DRs have 
to be solved numerically

R: real part of form factors
X: 2-by-2 rescattering matrix
[X = tan(δ) in the elastic limit]
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Isospin=0 phase-shift (J=0)
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[Garcia-Martin, Kaminski, Pelaez, 
Ruiz de Elvira, Yndurain ‘11; 
Pelaez, Rodas, Ruiz De Elvira ‘19; 
Pelaez, Rodas ‘20][Buettiker, 
Descotes-Genon, Moussallam ‘04]

● Neglect the effect of further channels
● Experimental input for (ππ, KK) phase-

shifts and inelasticity (“π↔K prob”) in 
isospin=0 available

[Moussallam ‘00; Descotes-Genon ‘03]



  

7Further physical inputs
● Subtraction constant of DRs taken 

from large-Nc; improvement given by 
rescattering (sub-leading in large-Nc)

● Decay constants and form factors 
(include sub-leading effects in large-Nc)

● Large perturbative QCD effects 
αs(μ)*log(μ/MW) are included in Wilson 
Coefficients (RGE improvement)

● Isospin analysis: information from D+ into π+π0, K+KS branching ratios into 
D0 decays; phase-shifts of final states with isospin=1 and =2 undetermined

Rescattering/Omnes: 
phase-shifts and 
inelasticity

form factors

Short distance:
WCs, CKM factors

Subtraction cnt,
tree topology: 
leading in large-Nc

decay 
 cnts
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D0,±
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[Buras, Gerard, Rueckl ‘85; Bauer, Stech, Wirbel ‘86; 
Buras, Silvestrini ‘00; Mueller, Nierste, Schacht ‘15]



  

8Summary of results

● Predicted branching ratios are close to their 
experimental values, while CP asymmetries are small

● Preliminary predictions; ongoing: determination of 
error budget coming from phase-shift and inelasticity 
parameterizations

● Next: one particular set of input data for isospin=0 
[inelasticity determined from pion-pion data]
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9CP-even amplitudes and BRs

● Phase-shifts of final states with isospin=1 and =2 adjusted
● Right branching ratios ≡ CP-even amplitudes from isospin fit well reproduced
● Rescattering: another source of difference between pions and kaons, of size 

similar to fK/fπ and FDK/FDπ
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[Franco, Mishima, 
Silvestrini ‘12]



  

10CP-odd amplitudes and CP asym.

● Weak-phase: rephasing-invariant Jarlskog/|λd|2 from bottom, strange and unflavoured

● Possible to have CPV from different interferences between amplitudes; no significant 
cancellation among different terms observed

● It seems difficult to explain the level of the measured CPV based on this approach
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A
i
, B

i
: full amplitude moduli

   (schematic)



  

Conclusions
● Data-driven approach: isospin=0 rescattering effects through 

DRs, with subtraction constants given by large-Nc; isospin=1 & 
isospin=2 rescattering effects from D+ into π+π0, K+KS BRs

● Right values for π+π-, π0π0 and K+K-, KSKS BRs

● CP asymmetries are too small
● Ongoing: error budget determination (main source: different 

parametrizations of the phase-shifts and inelasticity)
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Many thanks!, Grazie mille!



  

BACK UP



  

Fit of isospin amplitudes

Global fit combination of D to ππ 
and D to KK branching ratios & 
CP asymmetries

Size of 
penguins (x106)

Penguin stil l largely unconstrained

● Incorporate unitarity @ mD only

● Amplitudes satisfy relations involving phase-
shifts and inelasticity, that can be 
implemented in an isospin fit

● Fit includes also BRs and CP asyms.

[Franco, Mishima, Silvestrini ‘12]

[for inclusion of phase-
shifts and inelasticity @ 
m

D
 see also: Bediaga, 

Frederico, Magalhaes ‘22]
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Operator basis
● WCs of penguin operators are tiny (aka GIM mechanism)
● The main effect of CPV comes from non-unitarity of the 2-by-2 CKM sub-

matrix; CP-odd contribution comes from penguin topologies with insertions of 
current-current operators (light flavours in the loop, i.e., long-distance effect)

● The quantity Qudcs is rephasing-invariant and has an imaginary part, namely, 
the Jarlskog

[Buchalla, Buras, 
Lautenbacher ‘95]

[see also: Brod, Grossman, Kagan, Zupan ‘12; ...]
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Slide from Antonio 
Pich, “Kaon decays & 
CP Violation”, FPCP 
2020 (virtual)

App 3
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