Rare Radiative decays at LHCb

M. Vieites Díaz, on behalf of the LHCb collaboration École Polytechnique Fédérale de Lausanne

International Conference on High Energy Physics 9th July 2022, Bologna, Italy

BOLOGNA

Radiative decays

- Flavour Changing Neutral Current \rightarrow proceeds via loops in the Standard Model (SM)
 - There is no restriction to which particles run in the loop!
 - Access to much larger mass scales than direct searches
- Plenty of observables to study

•
$$\mathscr{H}_{eff} \propto V_{ts}^* V_{tb} (C_7 O_7 + C_7' O_7')$$

- $O_7^{(1)}$ are the left(right)-handed electromagnetic dipole operators and $C_7^{(\prime)}$ the Wilson coefficients
- Right-handed currents / C'_7 very suppressed in the SM

$$\gamma_{\mathrm{L}(\mathrm{R})} \mathcal{Z}$$

$$\mathcal{CP} \rightarrow Im(C_{7}^{(\prime)})$$

$$\mathcal{B} \rightarrow (|C_{7}|^{2} + |C_{7}^{\prime}|^{2})$$

$$\gamma_{(L/R)} \rightarrow |C_{7}^{\prime}/C_{7}|$$

 $b_{
m R(L)}$

Brief history of LHCb's triggers used for radiatives

• Run 1:

- Exclusive $B^0 \to K^* \gamma$ and $B^0_s \to \phi \gamma$
- Focus on hadronic part (topological lines)
- Inclusive High Level Trigger (HLT) selection optimised for 2 hadrons + γ
- Run 3 (similar structure as for Run 2):
 - Better knowledge and increased statistics of the training samples for the MVA based triggers
 - Much improved case for converted photons (less material)
 - Better understanding of the partially reconstructed backgrounds with π^0 and η
 - Larger dynamic range of the ECAL, saturation shifted to 20GeV (instead of 10GeV)

ICHEP22, M. Vieites Díaz, EPFL

• Run 2:

- Exclusive lines kept to maximise statistics
- New topologies included in exclusive lines (baryons, di-photon,...) also with displaced secondary vertices
- Significant rates with converted photons $(\gamma \rightarrow e^+ e^-)$
- Dedicated 2 and 3h combinations, matched with a high energy γ
 - Looser requirements on the hadronic part
 - MVA selection replaces rectangular cuts
 - Good performance on $4h + \gamma$ modes too

WOR

Brief history of LHCb's triggers used for radiatives

K IN ROCRESS

WORK

4

• Run 1:

- Exclusive $B^0 \to K^* \gamma$ and $B^0_s \to \phi \gamma$
- Im(C7'), BR and TD analyses
- Run 3 (similar structure as for Run 2):
 - Better knowledge and increased statistics of the training samples for the MVA based triggers
 - Much improved case for converted photons (less material)
 - Better understanding of the partially reconstructed backgrounds with π^0 and η
 - Larger dynamic range of the ECAL, saturation shifted to 20GeV (instead of 10GeV)

ICHEP22, M. Vieites Díaz, EPFL

• Run 2:

- Improved Time-Dependent analyses for with $B_{(s)} \rightarrow hh\gamma$
- First results with baryonic decays
- Angular analysis in $B^0 \to K^{*0}e^+e^-$ at low q^2 [JHEP 12 (2020) 081]
- Search for rare modes $(|C_7|^2 + |C_7'|^2)$, including $b \to d\gamma$
- Amplitude analyses (also with Time-Dependent CPV sensitivity) ($|C_7'/C_7|$)

LHCb's latest results on Radiative decays

Known penguins? Rare penguins? No penguins?

ICHEP22, M. Vieites Díaz, EPFL

• News since ICHEP20:

- Measurement of the photon polarisation in $\Lambda_{h}^{0} \rightarrow \Lambda \gamma$ decays [Phys. Rev. D105 (2022) L051104]
- Search for the radiative $\Xi_h^- \to \Xi^- \gamma$ decay [JHEP 01] <u>(2022) 069</u>]
- [Bonus, short title] "... and search for the $B_s^0 \rightarrow \mu \mu \gamma$ decay" [PHYS. REV. D105 (2022) 012010] and [Phys. Rev. Lett. 128, (2022) 041801]

See M. Van Veghel's talk, today@15h07

Measurement of the photon

• First observation by LHCb [PRL 123 031801 (2019)] using 1.6 fb^{-1}

$$\mathscr{B}(\Lambda_b^0 \to \Lambda \gamma) = (7.1 \pm 1.5 \pm 0.6 \pm$$

- Very challenging topology:
 - Long-lived secondary particle + photon (no track, no direction from the ECAL cluster)
 - Combinatorial background controlled with efficient MVA
 - Dedicated exclusive trigger line for Run 2
- Now: first angular analysis of radiative b-baryon decays using $6 f b^{-1}$ collected by LHCb in Run 2
 - Optimised selection

ICHEP22, M. Vieites Díaz, EPFL

polarisation in
$$\Lambda^0_b \to \Lambda \gamma$$
 decays
[Phys. Rev. D105 (2022) L05⁻

 $(0.7) \times 10^{-6}$

Measurement of the photon polarisation in $\Lambda_h^0 \to \Lambda \gamma$ decays [Phys. Rev. D105 (2022) L051104]

- Weak decay of b-baryon (non-zero spin): sensitivity to photon polarisation
- Angular dependence

 $dW(\theta_p, \theta_\Lambda) \propto 1 - \alpha_\Lambda P_{\Lambda_b} \cos \theta_p \cos \theta_\Lambda$ $-\alpha_{\gamma}\left(\alpha_{\Lambda}\cos\theta_{p}-P_{\Lambda_{h}}\cos\theta_{\Lambda}\right)$

• Integrating over $cos(\theta_{\Lambda})$

 $dW(\theta_p) \propto 1 - \alpha_\gamma \alpha_\Lambda \cos \theta_p$

• Sensitivity to α_{γ} using α_{Λ} (Λ weak decay parameter) fixed to the average of the value measured by BESIII in Λ and $\overline{\Lambda}$ decays, $\alpha_{\Lambda} = 0.754 \pm 0.004$ Nature Phys. 15 (2019) 631

$$\alpha_{\gamma} = \frac{P(\gamma_L) - P(\gamma_R)}{P(\gamma_L) + P(\gamma_R)}$$

$$lpha_\gamma = rac{1-|r|^2}{1+|r|^2}
onumber \ r^{\scriptscriptstyle LO} = rac{C_7'}{C_7} \sim rac{m_s}{m_b} ext{ in SM}$$

• Analysis strategy: fit the $cos(\theta_p)$ distribution using $m(p\pi\gamma)$ to define signal region and fix signal/background yields

- Mass fit with three components: Combinatorial, Signal, Partially reconstructed $\Lambda_h^0 \to \Lambda \eta (\to \gamma \gamma)$
 - Signal yield in signal region: 440 ± 40 events
- Background shape for angular fit taken from the sidebands

Measurement of the photon polarisation in $\Lambda_h^0 \to \Lambda \gamma$ decays [Phys. Rev. D105 (2022) L051104]

ICHEP22, M. Vieites Díaz, EPFL

Acceptance shape taken from simulation

- Validated with simulation and data from $\Lambda_h^0 \to \Lambda J/\psi$ decay (same final state) hadrons)
- Combinatorial shape accounts for the partially reconstructed $\Lambda_h^0 \to \Lambda \eta (\to \gamma \gamma)$
- Result allows to rule-out previous 2-fold **ambiguity** in the $Re(C_7^{'NP}) | Re(C_7^{NP}) |$ plane
- First direct measurement of the photon polarisation!

$$\alpha_{\gamma} = 0.82^{+0.17}_{-0.26} (stat.)^{+0.04}_{-0.13} (syst.)$$

 Sensitivity to CP-violation: self-tagged decay, allows to split the sample depending to the charge of the final state hadrons

- First attempt at this search!

Search for the radiative $\Xi_h^- \to \Xi^- \gamma$ decay [JHEP 01 (2022) 069]

- Three displaced vertices:
 - Restrict analysis to cases where all resonances decay inside the VELO (existing trigger line)
- Selection based on mass windows around the Λ, Ξ^- and the Ξ_h^- and **multivariate discriminator** against combinatorial background
- Simultaneous fit to signal candidates + control mode ($\Xi_h^- \to \Xi^- J/\psi$, with same hadronic content in the final state), sharing the $m_{\Xi_{\overline{h}}}$ parameter
- No signal found, limit placed using Feldman-Cousins method

$\mathscr{B}(\Xi_b^- \to \Xi^- \gamma) < 1.3(0.6) \times 10^{-4}$ at 95%(90%) level

Added bonus in the $B_s^0 \rightarrow \mu^+ \mu^-$ analysis! [Phys. Rev. D105 (2022) 012010]

today@15h07

- See Maarten's talk for details
 - Use $B_s^0 \rightarrow \mu^+ \mu^-$ data sample and analysis strategy to search for $B_s^0 \rightarrow \mu^+ \mu^- \gamma$, without explicitly reconstructing the photon
 - No evidence found for $B_s^0 \to \mu^+ \mu^- \gamma$ (1.5 σ), limit set using CLs method:

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) < 1.5(2.0) \times 10^{-9}, [m_{\mu\mu} > 4.9 GeV/c^2]$

[Phys. Rev. Lett. 128, (2022) 041801]

Conclusions

- $b \rightarrow s(d)\gamma$ transitions are sensitive to New Physics phenomena
- LHCb has unique opportunities to explore radiative decays of all hadron species with large data samples!
 - Achieved world-best constraint on photon polarisation with $B^0 \to K^{*0} e^+ e^-$
 - First direct measurement of photon polarisation in $\Lambda_{h}^{0} \rightarrow \Lambda \gamma$
- Several analysis with Run 2 data on the pipe line
- Run 3 is around the corner!

A. Paul and D. M. Straub, JHEP 04 (2017) 027 D. M. Straub, "flavio", arXiv:1810.08132

ICHEP22, M. Vieites Díaz, EPFL

Sis

_ S

TA

DF7

details

The LHCb detector (Runs 1 and 2)

 $\Delta E/E_{ECAL} = 1\% + 10\% / \sqrt{(E[GeV])}$

ICHEP22, M. Vieites Díaz, EPFL

• TWO-LEVEL TRIGGER:

- L0 hardware (12 \rightarrow 1 MHz)
- HLT software ($1 \rightarrow 0.005$ MHz)

Very good $\varepsilon(\mu)$ Good ε(h)

DIPOLE MAGNET

MUON SYSTEM

CALORIMETERS energy measurement particle identification

LHCb Detector Performance

International Journal of Modern Physics A Vol. 30, No. 7 (2015) 1530022

LHCb detector upgrade (Run 3)

- Installation of the upgrade during LHC Long Shutdown 2 (2019-2022)
- Main changes in operation:
 - Instantaneous luminosity $2 \cdot 10^{33} cm^{-2} s^{-1}$ (x5 Run2)
 - 40 MHz trigger-less read-out
 - Full software trigger
- Main changes in the detector:
 - New tracking detectors: VELO, UT, SciFi
 - Upgraded photodetectors and electronics for both RICH systems
 - Upgrade of readout electronics for the calorimeters and the muon system

Track types in LHCb

Result allows to rule-out previous 2-fold **ambiguity** in the $Re(C_7^{'NP}) | Re(C_7^{NP}) |$ plane

New input from $\Lambda_h^0 \to \Lambda \gamma$

