Status of $R(D^{(*)})$ measurement with semileptonic tagging at $B\!A\!B\!A\!R$

Yunxuan Li, for the BABAR Collaboration

ICHEP, 2022 Bologna, Italy

Motivation for $R(D^{(*)})$ measurements

- ullet Semileptonic decays of B mesons mediated by W bosons.
- Decays involving electrons or muons are less sensitive to beyond standard model (BSM) contribution, while decays involving higher-mass τ lepton are sensitive to additional amplitudes.
- Development of heavy quark effective theory (HQET) and precise measurements of $B \to D^{(*)} l \nu$ (HFLAV2021):

$$R(D)_{\rm SM} = 0.299 \pm 0.003, R(D^*)_{\rm SM} = 0.254 \pm 0.005$$

Previous measurements

Experiment	R(D)	$R(D^*)$	Method
BaBar 2012	$0.440 \pm 0.058 \pm 0.042$	$0.322 \pm 0.024 \pm 0.018$	hadronic tag, $ au ightarrow l u u$
Belle 2015	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$	hadronic tag, $ au ightarrow l u u$
LHCb 2015	-	$0.336 \pm 0.027 \pm 0.030$	$\tau \to \mu \nu \nu$
Belle 2017	-	$0.270 \pm 0.035 \pm 0.027$	hadronic tag
LHCb 2018	-	$0.283 \pm 0.019 \pm 0.029$	$ au ightarrow 3\pi u$
Belle 2019	$0.307 \pm 0.037 \pm 0.016$	$0.283 \pm 0.018 \pm 0.014$	semileptonic tag

The discrepancy between measurements and the SM predictions is about $3.3\sigma.$

BABAR experiment

- Asymmetric e^+e^- collider operating at center-of-mass energy of 10.58 GeV.
- Total integrated luminosity of 514 fb $^{-1}$ was collected (1999-2008), mostly at the $\Upsilon(4S)$ resonance, but also at the $\Upsilon(3S)$ and $\Upsilon(2S)$ peaks, as well as off-resonance.

Collaboration is still active more than 10 years after data taking ended!

Analysis strategy

- Measure $R(D^{(*)})$ using semileptonic tagging and leptonic τ decays.
- Combined measurements of ${\cal R}(D^0)$ and ${\cal R}(D^+)$ with isospin average.
- 2-dimensional maximum likelihood fit on data for signal extraction.
- The yields of signal and normalization modes are extracted simultaneously, aiming to eliminate some sources of systematic uncertainties.

Reconstruction

- Charged tracks are identified using loose PID. Photons are only considered with energy larger than 30 MeV.
- Criteria on reconstructed m(D) and $\Delta M = m(D^*) m(D)$ based on resolution for each $D^{(*)}$ mode.
- To identify B_{tag} , we require $\cos\theta_{B-D^{(*)}l}^{tag} \in [-2,1].$

$$\cos\theta_{B-D^{(*)}l}^{tag} = \frac{2E_{beam}E_{D^{(*)}l} - m_B^2 - m_{D^{(*)}l}^2}{2|\mathbf{p}_B|\cdot|\mathbf{p}_{D^{(*)}l}|}$$

- Search for $D^{(*)}l$ from the remaining tracks and neutral clusters: $D^+l, D^0l, D^{*+}l, D^{*0}l$.
- No extra charged tracks, K_S^0 or π^0 particles.

Multivariate analysis for signal separation

- z_1 aims to distinguish signal and normalization events from all types of backgrounds.
- ullet z_2 aims to distinguish between signal and normalization events.
- Both classifiers are boosted decision tree (BDT) models.

Signal modeling

z2 score

0.04

0.02

Computation time speed-up

Figure: Benchmark performance for various implementations, as a function of sample size (N) (log = log₂).

Dual-tree algorithm with GPU acceleration for speed-up [A. Gray and A. Moore, 2003].

2D fit

- Extract signals from each of four subsets $D^+l, D^0l, D^{*+}l, D^{0*}l$ independently.
- For each subset, the distribution is combination of signal, normalization, feed-up (feed-down), $B \to D^{**} l \nu, \ B \bar{B}$ combinatorial and continuum events
- Maximum likelihood fit is applied on each subset.
 All the yields are free parameters (Y_js) during the 2D fit.

$$\max_{\mathbf{Y}} \mathcal{L} = \prod_{i=1}^{n} \left(\sum_{j=1}^{C} Y_j \cdot f(z_{1j}, z_{2j}) \right)$$

$$s.t. \sum_{i=1}^{C} Y_j = N$$
(1)

Figure: Example of 2D fit on $D^0 l$ subset.

Systematic uncertainties (preliminary)

Source	$\Delta R(D)$ (%)	$\Delta R(D^*)$ (%)
B o D l u form factor	0.48	0.30
$B o D^*l u$ form factor	0.96	0.58
$B o D^{**}l u$ form factor	0.35	0.20
$\mathcal{B}(B \to D^{(*)}l\nu)$	0.47	0.32
$\mathcal{B}(b o c \bar{c})$	0.49	0.25
$\mathcal{B}(B o D^{**}l u)$	2.94	2.53
$\mathcal{B}(D)$	0.87	0.91
PDF shapes MC statistics	4.12	4.37
$Bar{B}$ Background calibration	2.60	0.94
$\mathcal{B}(\Upsilon(4S))$	0.29	0.33
PID efficiency	0.29	0.40
Soft π^0 efficiency	0.84	1.24
$\mathcal{B}(au o l^-ar u_l u_ au)$	0.16	0.16
Systematic Total	5.98	5.31
Statistical Uncertainty	19.6	9.9
Total	20.68	11.23

Table: Summary of uncertainties evaluated on MC.

The overall uncertainties are still dominated by statistics.

Systematic uncertainty due to $\mathcal{B}(B o D^{**}(l/ au) u)$

- Generally, D^{**} is defined as any excited charmed meson states that is not in the 1S ground state. The following possibilities are considered in this analysis:
 - Resonant $D^{**}(1P)$ state: four lightest orbitally excited states $D_0^*(2400), D_1^{'}(2430), D_1(2420), D_2^*(2460).$
 - Resonant $D^{**}(2S)$ state: radially-excited modes.
 - Non-resonant $B \to D^{**}(l/\tau)\nu$ where $D^{**} \to D^{(*)}\pi$
- Some uncertainties from $\mathcal{B}(B \to D^{**} \tau \nu)$ are estimated using phase space model:

$$\mathcal{R}(D^{**}) = \frac{\mathcal{B}(\bar{B} \to D^{**}\tau^-\bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D^{**}l^-\bar{\nu}_l)} \approx \frac{\Phi(\bar{B} \to D^{**}\tau^-\bar{\nu}_\tau)}{\Phi(\bar{B} \to D^{**}l^-\bar{\nu}_l)}$$

Conclusion

- A measurement of $R(D^{(*)})$ from BABAR after a decade.
- BABAR's first $R(D^{(*)})$ measurement using semileptonic B-tagging method and leptonic τ decays.
- Developed a new measurement method, more data-driven during signal extraction.
- The analysis is currently under internal review.

Thanks for your attention!

Event types definition for the measurement

Event type		Description	
Signal event	signal D	One B decays to $D^{(*)}l\nu$, the other B decays to $D\tau\nu$, $ au o$ leptons	
Signal event	signal D^*	One B decays to $D^{(*)}l\nu$, the other B decays to $D^*\tau\nu$, $ au o$ leptons	
Normalization event	norm D	One B decays to $D^{(*)}l\nu$, the other B decays to $Dl\nu$	
Normalization event	norm D^*	Both B decay to $D^*l\nu$	
D^{**} event		At least one B decays to $D^{**}(l/\tau)\nu$, where D^{**} includes $1P$ states	
		$D_0^*, D_1, D_1', D_2^*, 2S$ states, and non-resonant states.	
combinatorial $Bar{B}$ event		Any $Bar{B}$ events that are not signal and not normalization and not	
		D^{**} .	
Continuum event		non- $Bar{B}$ events produced in the detector	

Table: Definition of event types in the B-factory system.

Distribution of selected variables

Maximum likelihood estimation details

For the D^+l subset, the distribution is combination of signal, signal feed-down, normalization, normalization feed-down, $B\to D^{**}l\nu$, $B\bar{B}$ combinatorial and continuum events:

$$\begin{split} f(z_{1},z_{2}) &= N_{B\to D\tau\nu}f_{B\to D\tau\nu}(z_{1},z_{2}) + N_{B\to D^{*}\tau\nu}f_{B\to D^{*}\tau\nu}(z_{1},z_{2}) \\ &+ N_{B\to Dl\nu}f_{B\to Dl\nu}(z_{1},z_{2}) + N_{B\to D^{*}l\nu}f_{B\to D^{*}l\nu}(z_{1},z_{2}) \\ &+ N_{B\to D^{**}l\nu}f_{B\to D^{**}l\nu}(z_{1},z_{2}) + N_{\text{Other Bkgs}}f_{\text{Other Bkgs}}(z_{1},z_{2}) \end{split} \tag{2}$$