A novel approach to semileptonic heavy-to-light B decays through the Dispersive Matrix method

Work in collaboration with G. Martinelli and S. Simula

[PRD '21 (2105.02497), JHEP '22 (2202.10285), ...]

Ludovico Vittorio (SNS & INFN, Pisa)

ICHEP 2022 - Bologna

 $\bar{
u}_{\ell}$

(from J.Phys.G 46 (2019) 2, 023001)

puzzle: | V_{ub} | puzzle: | V_{ub} | $imes 10^3 = 3.74(17)$ | **VS**

FLAG Review 2021 [arXiv:2111.09849]

 $ullet V_{ub}$ puzzle:

EXCLUSIVE

FLAG Review 2021 [arXiv:2111.09849]

INCLUSIVE

$$|V_{ub}| \times 10^3 = 3.74(17)$$
 VS

Lot of averaged values:

$$|V_{ub}|_{incl} \cdot 10^3 = 4.19(12) \binom{+0.11}{-0.12}$$

$$|V_{ub}|_{incl} \cdot 10^3 = 4.32 \, (29)$$
FLAG Review 2021 [arXiv:2111.09849]

$$|V_{ub}|_{incl} \cdot 10^3 = 4.13 \,(26)$$

PDG Review 2021 [PTEP 2020 083C01]

VS

EXCLUSIVE

INCLUSIVE

$$|V_{ub}|$$
 puzzle:

$$|V_{ub}| \times 10^3 = 3.74(17)$$

Lot of averaged values:

FLAG Review 2021 [arXiv:2111.09849]

$$\sim 1.5-2\,\sigma$$
 difference

$$|V_{ub}|_{incl} \cdot 10^3 = 4.19(12)(^{+0.11}_{-0.12})$$

$$|V_{ub}|_{incl} \cdot 10^3 = 4.32 \, (29)$$
FLAG Review 2021 [arXiv:2111.09849]

$$|V_{ub}|_{incl} \cdot 10^3 = 4.13\,(26)$$
PDG Review 2021 [PTEP 2020 083C01]

$$ullet V_{ub}$$
 puzzle:

EXCLUSIVE

INCLUSIVE

$$|V_{ub}| \times 10^3 = 3.74(17)$$

VS

Lot of averaged values:

$$\sim 1.5 - 2\,\sigma$$
 difference

$$|V_{ub}|_{incl} \cdot 10^3 = 4.19(12) \binom{+0.11}{-0.12}$$

HFLAV COII. [arXiv:2206.07501]

 $|V_{ub}|_{incl} \cdot 10^3 = 4.32(29)$

FLAG Review 2021 [arXiv:2111.09849]

 $|V_{ub}|_{incl} \cdot 10^3 = 4.13(26)$

Although there is not a huge tension between the inclusive and the exclusive determinations, it is important to have the numerical values well under control (precision physics)!

$$oldsymbol{V}_{ub}$$
 puzzle:

FXCLUSIVE

INCLUSIVE

$$\left|V_{ub}
ight|$$
 puzzle:

$$|V_{ub}| \times 10^3 = 3.74(17)$$
 VS

Lot of averaged values:

FLAG Review 2021 [arXiv:2111.09849]

$$|V_{ub}|_{incl} \cdot 10^3 = 4.19(12) \binom{+0.11}{-0.12}$$

HFLAV Coll. [arXiv:2206.07501]

 $|V_{ub}|_{incl} \cdot 10^3 = 4.32(29)$

FLAG Review 2021 [arXiv:2111.09849]

 $|V_{ub}|_{incl} \cdot 10^3 = 4.13(26)$

To this end, a central role is played by the hadronic Form Factors (FFs), which enter in the differential decay widths:

$$\frac{d\Gamma(B_{(s)} \to \pi(K)\ell\nu_{\ell})}{dq^{2}} = \frac{G_{F}^{2}|V_{ub}|^{2}}{24\pi^{3}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \left[|\vec{p}_{\pi(K)}|^{3} \left(1 + \frac{m_{\ell}^{2}}{2q^{2}}\right)|f_{+}^{\pi(K)}(q^{2})|^{2} + m_{B_{(s)}}^{2}|\vec{p}_{\pi(K)}|\left(1 - r_{\pi(K)}^{2}\right)^{2} \frac{3m_{\ell}^{2}}{8q^{2}}|f_{0}^{\pi(K)}(q^{2})|^{2}\right],$$

$$oldsymbol{V}_{ub}$$
 puzzle:

FXCLUSIVE

INCLUSIVE

$$\left|V_{ub}
ight|$$
 puzzle:

$$|V_{ub}| \times 10^3 = 3.74(17)$$
 VS

Lot of averaged values:

FLAG Review 2021 [arXiv:2111.09849]

$$\sim 1.5 - 2\,\sigma$$
 difference

$$|V_{ub}|_{incl} \cdot 10^3 = 4.19(12) \binom{+0.11}{-0.12}$$

HFLAV Coll. [arXiv:2206.07501]

 $|V_{ub}|_{incl} \cdot 10^3 = 4.32(29)$

FLAG Review 2021 [arXiv:2111.09849]

 $|V_{ub}|_{incl} \cdot 10^3 = 4.13(26)$

To this end, a central role is played by the hadronic Form Factors (FFs), which enter in the differential decay widths:

$$\frac{d\Gamma(B_{(s)} \to \pi(K)\ell\nu_{\ell})}{dq^{2}} = \frac{G_{F}^{2}|V_{ub}|^{2}}{24\pi^{3}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \left[|\vec{p}_{\pi(K)}|^{3} \left(1 + \frac{m_{\ell}^{2}}{2q^{2}}\right) f_{+}^{\pi(K)}(q^{2})|^{2} + m_{B_{(s)}}^{2}|\vec{p}_{\pi(K)}| \left(1 - r_{\pi(K)}^{2}\right)^{2} \frac{3m_{\ell}^{2}}{8q^{2}} |f_{0}^{\pi(K)}(q^{2})|^{2}\right] ,$$

$$ullet V_{ub}$$
 puzzle:

EXCLUSIVE

 $|V_{ub}| \times 10^3 = 3.74(17)$ VS

FLAG Review 2021 [arXiv:2111.09849]

 $\sim 1.5 - 2\,\sigma$ difference

INCLUSIVE

Lot of averaged values:

$$|V_{ub}|_{incl} \cdot 10^3 = 4.19(12) \binom{+0.11}{-0.12}$$
HFLAV Coll. [arXiv:2206.07501]

$$|V_{ub}|_{incl} \cdot 10^3 = 4.32 \, ig(29ig)$$
FLAG Review 2021 [arXiv:2111.09849]

$$|V_{ub}|_{incl} \cdot 10^3 = 4.13\,(26)$$
PDG Review 2021 [PTEP 2020 083C01]

To this end, a central role is played by the hadronic Form Factors (FFs), which enter in the differential decay widths:

$$\frac{d\Gamma(B_{(s)} \to \pi(K)\ell\nu_{\ell})}{dq^{2}} = \frac{G_{F}^{2}|V_{ub}|^{2}}{24\pi^{3}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \left[|\vec{p}_{\pi(K)}|^{3} \left(1 + \frac{m_{\ell}^{2}}{2q^{2}}\right) f_{+}^{\pi(K)}(q^{2})|^{2} + m_{B_{(s)}}^{2}|\vec{p}_{\pi(K)}| \left(1 - r_{\pi(K)}^{2}\right)^{2} \frac{3m_{\ell}^{2}}{8q^{2}} |f_{0}^{\pi(K)}(q^{2})|^{2}\right],$$

Lattice QCD (LQCD)

simulations can determine the FFs ONLY at high values of momentum transfer...

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high- q^2 (or low-w) regime, we extract the FFs behaviour in the low- q^2 (or high-w) region!

Original proposal from L. Lellouch: NPB, 479 (1996) New developments in PRD '21 (2105.02497)

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high- q^2 (or low-w) regime, we extract the FFs behaviour in the low- q^2 (or high-w) region!

Original proposal from L. Lellouch: NPB, 479 (1996) New developments in PRD '21 (2105.02497)

The resulting description of the FFs

- is entirely based on first principles (LQCD evaluation of 2- and 3-point Euclidean correlators)
- is independent of any assumption on the functional dependence of the FFs on the momentum transfer
- can be applied to theoretical calculations of the FFs, but also to experimental data
- keep theoretical calculations and experimental data separated
- is universal: it can be applied to any exclusive semileptonic decays of mesons and baryons

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high- q^2 (or low-w) regime, we extract the FFs behaviour in the low- q^2 (or high-w) region!

Original proposal from L. Lellouch: NPB, 479 (1996) New developments in PRD '21 (2105.02497)

The resulting description of the FFs

- is entirely based on first principles (LQCD evaluation of 2- and 3-point Euclidean correlators)
- is independent of any assumption on the functional dependence of the FFs on the momentum transfer
- can be applied to theoretical calculations of the FFs, but also to experimental data
- keep theoretical calculations and experimental data separated
- is universal: it can be applied to any exclusive semileptonic decays of mesons and baryons

No HQET, no series expansion, no perturbative bounds with respect to the well-known other parametrizations

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high- q^2 (or low-w) regime, we extract the FFs behaviour in the low- q^2 (or high-w) region!

Original proposal from L. Lellouch: NPB, 479 (1996) New developments in PRD '21 (2105.02497)

The resulting description of the FFs

- is entirely based on first principles (LQCD evaluation of 2- and 3-point Euclidean correlators)
- is independent of any assumption on the functional dependence of the FFs on the momentum transfer
- can be applied to theoretical calculations of the FFs, but also to experimental data
- keep theoretical calculations and experimental data separated
- is universal: it can be applied to any exclusive semileptonic decays of mesons and baryons

No HQET, no series expansion, no perturbative bounds with respect to the well-known other parametrizations

How does it work?

The DM method

Let us focus on a generic FF f: we can define

Let us focus on a generic FF
$$f$$
: we can define
$$\mathbf{M} = \begin{pmatrix} \chi & \phi f & \phi_1 f_1 & \phi_2 f_2 & ... & \phi_N f_N \\ \phi f & \frac{1}{1-z^2} & \frac{1}{1-zz_1} & \frac{1}{1-zz_2} & ... & \frac{1}{1-zz_N} \\ \phi_1 f_1 & \frac{1}{1-z_1 z} & \frac{1}{1-z_1^2} & \frac{1}{1-z_1 z_2} & ... & \frac{1}{1-z_1 z_N} \\ \phi_2 f_2 & \frac{1}{1-z_2 z} & \frac{1}{1-z_2 z_1} & \frac{1}{1-z_2^2} & ... & \frac{1}{1-z_2 z_N} \\ ... & ... & ... & ... & ... \\ \phi_N f_N & \frac{1}{1-z_N z} & \frac{1}{1-z_N z_1} & \frac{1}{1-z_N z_2} & ... & \frac{1}{1-z_N^2} \\ \phi_i f_i \equiv \phi(z_i) f(z_i) \text{ (with } i=1,2,...N) \end{pmatrix}$$

$$z(t)=rac{\sqrt{rac{t_+-t}{t_+-t_-}}-1}{\sqrt{rac{t_+-t}{t_+-t_-}}+1}$$
 $t_\pm\equiv(m_{B(s)}\pm m_{\pi(K)})^2$
 t : momentum transfer

Non-perturbative values of the susceptibilities from the dispersion relations (see PRD '21 (2105.07851)

The DM method

and JHEP '22 (2202.10285))

$$\mathbf{M} = egin{bmatrix} \phi_1 f_1 & rac{1}{1-z_1 z} & rac{1}{1-z_1^2} & rac{1}{1-z_1 z_2} & \cdots & rac{1}{1-z_1 z_N} \ \phi_2 f_2 & rac{1}{1-z_2 z} & rac{1}{1-z_2 z_1} & rac{1}{1-z_2^2} & \cdots & rac{1}{1-z_2 z_N} \ & \cdots & \cdots & \cdots & \cdots & \cdots \ \phi_N f_N & rac{1}{1-z_N z} & rac{1}{1-z_N z_1} & rac{1}{1-z_N z_2} & \cdots & rac{1}{1-z_N^2} \ \end{pmatrix}$$

$$\phi_i f_i \equiv \phi(z_i) f(z_i)$$
 (with $i = 1, 2, ...N$)

Estimates of the FFs, computed on the

outea on the lattice

$$z(t)=rac{\sqrt{rac{t_+-t}{t_+-t_-}}-1}{\sqrt{rac{t_+-t}{t_+-t_-}}+1}$$
 $t_\pm\equiv(m_{B(s)}\pm m_{\pi(K)})^2$ t : momentum transfer

$$\det \mathbf{M} \geq 0$$

$$f_{\rm lo}(z) \le f(z) \le f_{\rm up}(z)$$

Values of the momentum transfer @ which FFs are computed on the lattice

Two LQCD inputs have been used for our DM method (JHEP '22 [arXiv:2202.10285]):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

One KC:
$$f_0(0) = f_+(0)$$

L. Vittorio (SNS & INFN, Pisa)

Two LQCD inputs have been used for our DM method (JHEP '22 [arXiv:2202.10285]):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

Peculiarity of B $\rightarrow \pi$ decays: LONG extrapolation in q²

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

$$f^{\pi}(q^2=0)|_{\text{combined}} = -0.04 \pm 0.22$$

It seems that the mean value and the uncertainty are not stable under variation of the truncation order of a series expansion of the FFs...

The DM approach is independent of this issue!!!

L. Vittorio (SNS & INFN, Pisa)

Two LQCD inputs have been used for our DM method (JHEP '22 [arXiv:2202.10285]):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

Peculiarity of B
$$\rightarrow \pi$$
 decays: LONG extrapolation in q²

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

$$f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$$

Important issue: the DM
method equivalent to the
results of all possible (BCL) fits
which satisfy unitarity and at
the same time reproduce
exactly the input data

L. Vittorio (SNS & INFN, Pisa)

Two LQCD inputs have been used for our DM method (JHEP '22 [arXiv:2202.10285]):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

$$f^{\pi}(q^2=0)|_{\text{combined}} = -0.04 \pm 0.22$$

 $f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$

Some differences in slopes with respect to the RBC/UKQCD and the FNAL/MILC cases, although the extrapolations at zero momentum transfer are compatible to each other:

$$f^{\pi}(q^2 = 0)|_{\text{JLQCD}} = 0.155 \pm 0.176$$

IMPORTANT: new LQCD computations published by JLQCD Collaboration [arXiv:2203.04938]!

L. Vittorio (SNS & INFN, Pisa)

The extrapolation of the FFs at zero momentum transfer is of capital importance to test LFU:

$$R_{\pi}^{\tau/\mu} \equiv \frac{\Gamma(B \to \pi \tau \nu_{\tau})}{\Gamma(B \to \pi \mu \nu_{\mu})}$$

THEORY with DM method

Input RBC/UKQCD		FNAL/MILC	combined	
$R_{\pi}^{ au/\mu}$	0.767(145)	0.838(75)	0.793(118)	

EXPERIMENT

$$R_{\pi}^{\tau/\mu}|_{exp} = 1.05 \pm 0.51$$

The extrapolation of the FFs at zero momentum transfer is of capital importance to test LFU:

$$R_{\pi}^{\tau/\mu} \equiv \frac{\Gamma(B \to \pi \tau \nu_{\tau})}{\Gamma(B \to \pi \mu \nu_{\mu})}$$

THEORY with DM method

Input	RBC/UKQCD	FNAL/MILC	combined	
$oxed{R_{\pi}^{ au/\mu}}$	0.767(145)	0.838(75)	0.793(118)	

EXPERIMENT

$$-R_{\pi}^{\tau/\mu}|_{exp} = 1.05 \pm 0.51$$

$$\delta R_{\pi}^{\tau/\mu} \simeq 0.09$$
 ~80% reduction of the error!

The extrapolation of the FFs at zero momentum transfer is of capital importance to test LFU:

$$R_{\pi}^{\tau/\mu} \equiv \frac{\Gamma(B \to \pi \tau \nu_{\tau})}{\Gamma(B \to \pi \mu \nu_{\mu})}$$

THEORY with DM method

Input	RBC/UKQCD	FNAL/MILC	combined	
$R_{\pi}^{ au/\mu}$	0.767(145)	0.838(25)	0.793(118)	

Expected improved precision in LQCD computations of the FFs
@ high momentum transfer

Input	RBC/UKQCD	FNAL/MILC	combined	
$\delta R_{\pi}^{ au/\mu}$	0.73	0.38	0.59	

Hypothetical 50% reduction of the error...

EXPERIMENT

$$R_{\pi}^{\tau/\mu}|_{exp} = 1.05 \pm 0.51$$

$$\delta R_\pi^{\tau/\mu} \simeq 0.09$$
 ~80% reduction of the error!

The extrapolation of the FFs at zero momentum transfer is of capital importance to test LFU:

$$R_{\pi}^{\tau/\mu} \equiv \frac{\Gamma(B \to \pi \tau \nu_{\tau})}{\Gamma(B \to \pi \mu \nu_{\mu})}$$

THEORY with DM method

Input	RBC/UKQCD	FNAL/MILC	combined	
$R_{\pi}^{ au/\mu}$	0.767(145)	0.838(28)	0.793(118)	

Input	RBC/UKQCD	FNAL/MILC	combined
$\delta R_{\pi}^{\tau/\mu}$	0.73	0.38	0.59

Hypothetical 50% reduction of the error...

EXPERIMENT

$$R_{\pi}^{\tau/\mu}|_{exp} = 1.05 \pm 0.51$$

$$\delta R_\pi^{ au/\mu} \simeq 0.09$$
 ~80% reduction of the error!

For further investigation of possible NP effects in the future, it is fundamental to extrapolate appropriately the FFs behaviour in the whole kinematical range

$|V_{ub}|$ from semileptonic $B \rightarrow \pi$ decays

Six sets of data from Belle and BaBar collaborations:

```
BaBar 2011, 1 channel [PRD '11 (1005.3288)]
Belle 2011, 1 channel [PRD '11 (1012.0090)]
BaBar 2012, 2 channels [PRD '12 (1208.1253)]
Belle 2013, 2 channels [PRD '13 (1306.2781)]
```

$|V_{ub}|$ from semileptonic $B \rightarrow \pi$ decays

Six sets of data from Belle and BaBar collaborations:

BaBar 2011, 1 channel [PRD '11 (1005.3288)]

Belle 2011, 1 channel [PRD '11 (1012.0090)]

BaBar 2012, 2 channels [PRD '12 (1208.1253)]

Belle 2013, 2 channels [PRD '13 (1306.2781)]

$|V_{ub}|$ from semileptonic $B \rightarrow \pi$ decays

Six sets of data from Belle and BaBar collaborations:

BaBar 2011, 1 channel [PRD '11 (1005.3288)]

Belle 2011, 1 channel [PRD '11 (1012.0090)]

BaBar 2012, 2 channels [PRD '12 (1208.1253)]

Belle 2013, 2 channels [PRD '13 (1306.2781)]

The bands are the results of correlated weighted averages:

$$|V_{ub}|_n = \frac{\sum_{i,j} (\mathbf{C}^{-1})_{ij} |V_{ub}|_j}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}, \qquad \sigma^2_{|V_{ub}|_n} = \frac{1}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}$$

$|V_{ijh}|$ from semileptonic $B \rightarrow \pi$ decays

The bands are the results of correlated weighted averages:

$$|V_{ub}|_n = \frac{\sum_{i,j} (\mathbf{C}^{-1})_{ij} |V_{ub}|_j}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}, \qquad \sigma^2_{|V_{ub}|_n} = \frac{1}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}$$

$$\sigma_{|V_{ub}|_n}^2 = \frac{1}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}$$

25

$|V_{ijh}|$ from semileptonic $B \rightarrow \pi$ decays

Belle 2011 -

average

The bands are the results of correlated weighted averages:

$$|V_{ub}|_n = \frac{\sum_{i,j} (\mathbf{C}^{-1})_{ij} |V_{ub}|_j}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}, \qquad \sigma^2_{|V_{ub}|_n} = \frac{1}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}$$

0.015

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]

| Vub |: LHCb Coll. has measured for the first time

$$R_{BF} \equiv rac{\mathcal{B}(B_s^0 o K^- \mu^+
u_\mu)}{\mathcal{B}(B_s^0 o D_s^- \mu^+
u_\mu)}$$
 Low-q²: $q^2 \le 7 \, \mathrm{GeV}^2$ High-q²: $q^2 \ge 7 \, \mathrm{GeV}^2$

LHCb Collaboration, PRL '21 [2012.05143]

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]

Vub: LHCb Coll. has measured for the first time

$$R_{BF} \equiv rac{\mathcal{B}(B_s^0 o K^- \mu^+
u_\mu)}{\mathcal{B}(B_s^0 o D_s^- \mu^+
u_\mu)} \qquad ext{Low-q^2:} \qquad q^2 \le 7 \, \mathrm{GeV}^2$$

LHCb Collaboration, by using the exp. value **PRL '21 [2012.05143]** of the BR @ denominator

	0.6			0.6	
	0.5	DM combined		0.5	
B_0^2	0.4	combined +	B^*)	0.4	
$-q^2/m_{B_0^*}^2$	0.3		$-q^2/m_{B^*}^2)$	0.3	
$f_0^K(q^2)\cdot (1-$	0.2	TO THE STATE OF TH	$f_+^K(q^2) \cdot (1 -$	0.2	DM 52222
$f_0^K(\epsilon)$	0.1		$f_+^K(a)$	0.1	combined +
	0.0			0.0	
	-0.1		5 5	-0.1	0 5 10 15 20 25
		$q^2 (\mathrm{GeV^2})$			$q^2 \; (\mathrm{GeV^2})$

q^2 -bin	RBC/UKQCD	FNAL/MILC	HPQCD	combined
low	6.70 ± 3.26	6.43 ± 2.03	3.57 ± 1.94	5.31 ± 3.02
high	4.20 ± 0.56	4.10 ± 0.38	3.54 ± 0.43	3.94 ± 0.59
average	3.93 ± 0.46	3.93 ± 0.35	3.54 ± 0.35	3.77 ± 0.48

 $f_0^K(q^2)\cdot (1-q^2/m_{B_0^*}^2)$

0.5

0.0

 3.93 ± 0.46

DM EXXXXX

combined +

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]

| Vub |: LHCb Coll. has measured for the first time

$$R_{BF} \equiv rac{\mathcal{B}(B_s^0 o K^- \mu^+
u_\mu)}{\mathcal{B}(B_s^0 o D_s^- \mu^+
u_\mu)}$$
 Low-q²: $q^2 \le 7 \, \mathrm{GeV}^2$ High-q²: $q^2 \ge 7 \, \mathrm{GeV}^2$

LHCb Collaboration, PRL '21 [2012.05143] by using the exp. value of the BR @ denominator

 3.93 ± 0.35

0.5

0.0

DM Vub value: $|V_{ub}| \cdot 10^3 = 3.69 \pm 0.34$

average

when averaged with the B $\rightarrow \pi$ result

 3.54 ± 0.35

 $|V_{ub}| \cdot 10^3 = 3.62 \pm 0.47$

DM combined

 3.77 ± 0.48

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]

Vub: LHCb Coll. has measured for the first time

$$R_{BF} \equiv rac{\mathcal{B}(B_s^0 o K^- \mu^+
u_\mu)}{\mathcal{B}(B_s^0 o D_s^- \mu^+
u_\mu)}$$
 Low-q²: $q^2 \le 7 \,\mathrm{GeV}^2$ High-q²: $q^2 \ge 7 \,\mathrm{GeV}^2$

LHCb Collaboration, PRL '21 [2012.05143]

by using the exp. value of the BR @ denominator

q^2 -bin	RBC/UKQCD	FNAL/MILC	HPQCD	combined
low	6.70 ± 3.26	6.43 ± 2.03	3.57 ± 1.94	5.31 ± 3.02
high	4.20 ± 0.56	4.10 ± 0.38	3.54 ± 0.43	3.94 ± 0.59
average	3.93 ± 0.46	3.93 ± 0.35	3.54 ± 0.35	3.77 ± 0.48

DM Vub value: $|V_{ub}| \cdot 10^3 = 3.69 \pm 0.34$

when averaged with the $B \rightarrow \pi$ result

 $|V_{ub}| \cdot 10^3 = 3.62 \pm 0.47$

Improved determination of $|V_{ub}|$ from semileptonic $B \rightarrow \pi$ decays

Unitarity bound $|V_{ub}|^2 \chi_{1}$ with an initial guess $|V_{ub}|$

Improved determination of $|V_{ub}|$ from semileptonic $B \rightarrow \pi$ decays

|Vub| is then determined by using the theoretical unitary bands for $f_+(q^2)$ and by iterating the procedure until consistency for |Vub| is reached:

$$|V_{ub}|_{\mathrm{B}\pi}^{\mathrm{impr}} \times 10^3 = 3.88 \pm 0.32$$

Improved determination of $|V_{ub}|$ from semileptonic $B \rightarrow \pi$ decays

|Vub| is then determined by using the theoretical unitary bands for $f_+(q^2)$ and by iterating the procedure until consistency for |Vub| is reached:

$$|V_{ub}|_{\mathrm{B}\pi}^{\mathrm{impr}} \times 10^3 = 3.88 \pm 0.32$$

when averaged with the B $_{ extsf{S}}
ightarrow extsf{K}$ result $|V_{ub}| \cdot 10^3 = 3.77 \pm 0.48$

Final DM Vub value:

$$|V_{ub}|_{\rm DM}^{\rm final} \times 10^3 = 3.85 \pm 0.27$$

Improved determination of $|V_{ub}|$ from semileptonic $B \rightarrow \pi$ decays

|Vub| is then determined by using the theoretical unitary bands for $f_+(q^2)$ and by iterating the procedure until consistency for |Vub| is reached:

$$|V_{ub}|_{\mathrm{B}\pi}^{\mathrm{impr}} \times 10^3 = 3.88 \pm 0.32$$

when averaged with the B
$$_{ extsf{s}}
ightarrow extsf{K}$$
 result $|V_{ub}| \cdot 10^3 = 3.77 \pm 0.48$

Final DM Vub value:

$$|V_{ub}|_{\rm DM}^{\rm final} \times 10^3 = 3.85 \pm 0.27$$

Important: we still **keep separate the theoretical calculations and the experimental data** for
describing the shape of the FFs!

Summary plots/tables

	decays	DM	FLAG '21	inclusive
V _{cb} •10 ³	$B_{(s)} \to D_{(s)}^{(*)}$	41.2 (8)	39.48 (68)	42.16 (50)
V _{ub} •10 ³	$B_{(s)} \rightarrow \pi, K$	3.85 (27)	3.63 (14)	4.13 (26)

Summary plots/tables

See M. Naviglio's talk for details about the DM value of Vcb!

	decays	DM	FLAG '21	inclusive	
V _{cb} •10 ³	$B_{(s)} \to D_{(s)}(^*)$	41.2 (8)	39.48 (68)	42.16 (50)	
V _{ub} •10 ³	$B_{(s)} \rightarrow \pi, K$	3.85 (27)	3.63 (14)	4.13 (26)	

See M. Naviglio's talk for details about the DM value of Vcb!

	decays	DM	FLAG '21	inclusive	
V _{cb} •10 ³	$B_{(s)} \to D_{(s)}(^*)$	41.2 (8)	39.48 (68)	42.16 (50)	
V _{ub} •10 ³	$B_{(s)} \rightarrow \pi, K$	3.85 (27)	3.63 (14)	4.13 (26)	

See M. Bona's talk for details about the latest indirect determinations of Vub,Vcb from the Unitarity Triangle Analysis

Summary plots/tables

See M. Naviglio's talk for details about the DM value of Vcb!

	decays	DM	FLAG '21	inclusive
V _{cb} •10 ³	$B_{(s)} \to D_{(s)}(^*)$	41.2 (8)	39.48 (68)	42.16 (50)
V _{ub} •10 ³	$B_{(s)} \rightarrow \pi, K$	3.85 (27)	3.63 (14)	4.13 (26)

See M. Bona's talk for details about the latest indirect determinations of Vub,Vcb from the Unitarity Triangle Analysis

 $B_s \rightarrow K$

	RBC/UKQCD	FNAL/MILC	combined
$R_{\pi}^{ au/\mu}$	0.767(145)	0.838(75)	0.793(118)
$\left ar{\mathcal{A}}_{FB}^{\mu,\pi} ight $	0.0043(39)	0.0018(14)	0.0034(31)
$\left ar{\mathcal{A}}_{FB}^{ au,\pi} ight $	0.219(25)	0.221(19)	0.220(24)
$\left ar{\mathcal{A}}_{polar}^{\mu,\pi} ight $	0.985(11)	0.991(4)	0.988(9)
$\left ar{\mathcal{A}}_{polar}^{ au,\pi} ight $	0.294(87)	0.309(82)	0.301(86)

	RBC/UKQCD	FNAL/MILC	HPQCD	combined
$oxed{R_K^{ au/\mu}}$	0.845(122)	0.816(64)	0.680(134)	0.755(138)
$\left ar{\mathcal{A}}_{FB}^{\mu,K} ight $	0.0032(18)	0.0024(12)	0.0059(29)	0.0046(28)
$\left ar{\mathcal{A}}_{FB}^{ au,K} ight $	0.257(14)	0.246(14)	0.278(19)	0.262(23)
$\left ar{\mathcal{A}}_{polar}^{\mu,K} ight $	0.990(5)	0.992(4)	0.982(8)	0.986(7)
$\left ar{\mathcal{A}}_{polar}^{ au,K} ight $	0.172(54)	0.254(64)	0.112(79)	0.172(91)

THANKS FOR YOUR ATTENTION!

BACK-UP SLIDES

A methodological break: comparison with BGL/BCL

What is the **main improvement** with respect to BGL/BCL parametrization?

Boyd, Grinstein and Lebed, Phys. Lett. B353, 306 (1995) Bovd. Grinstein and Lebed, Nucl. Phys. B461, 493 (1996) Boyd, Grinstein and Lebed, Phys. Rev. D 56, 6895 (1997)

Basics of BGL: the hadronic FFs corresponding to definite spin-parity can be represented as an expansion, originating from unitarity, analyticity and crossing symmetry, in terms of the conformal variable z, for instance

$$g(z) = \frac{1}{\sqrt{\chi_{1-}(q_0^2)}} \frac{1}{\phi_g(z, q_0^2) P_{1-}(z)} \sum_{n=0}^{\infty} a_n z^n$$

$$\sum_{n=0}^{\infty} a_n^2 \le 1$$

Basics of BCL: similar to BGL, the expansion series has a simpler form, for instance

$$f_{+}(z) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{n=0}^{N_{z}-1} a_{k} \left[z^{n} - (-1)^{n-N_{z}} \frac{n}{N_{z}} z^{N_{z}} \right],$$

$$f_0(z) = \sum_{n=0}^{N_z - 1} b_k z^k.$$

Bourrely, Caprini and Lellouch, Phys. Rev. D 79, 013008 (2009)

Unitarity:
$$\sum_{i,j=0}^{N_z} B_{mn}^+ a_m a_n \leq 1, \quad \sum_{i,j=0}^{N_z} B_{mn}^0 b_m b_n \leq 1$$

	Fit	$N_z=3$	$N_z=4$	$N_z = 5$
	$\chi^2/{ m dof}$	2.5	0.64	0.73
	dof	6	4	2
	p	0.02	0.63	0.48
	$\sum B_{mn}^+ b_m^+ b_n^+$	0.11(2)	0.016(5)	1.0(2.3)
	$\textstyle\sum B_{mn}^0 b_m^0 b_n^0$	0.33(8)	2.8(1.7)	8(19)
T. I.I. VIII	f(0)	0.00(4)	0.20(14)	0.36(27)
Table XIII of arXiv:1503.07839	b_0^+	0.395(15)	0.407(15)	0.408(15)
(FNAL/MILC Coll.)	b_1^+	-0.93(11)	-0.65(16)	-0.60(21)
	b_2^+	-1.6(1)	-0.5(9)	-0.2(1.4)
	b_3^+		0.4(1.3)	3(4)
	b_4^+			5(5)
	b_0^0	0.515(19)	0.507(22)	0.511(24)
	b_1^0	-1.84(10)	-1.77(18)	-1.69(22)
	b_2^0	-0.14(25)	1.3(8)	2(1)
	b_3^0		4(1)	7(5)
	b_4^0			3(9)

 $f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$ $f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$ $f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$

L. Vittorio (SNS & INFN, Pisa)

Fit	$N_z = 3$	$N_z=4$	$N_z = 5$
$\chi^2/{ m dof}$	2.5	0.64	0.73
dof	6	4	2
p	0.02	0.63	0.48
$\sum B_{mn}^+ b_m^+ b_n^+$	0.11(2)	0.016(5)	1.0(2.3)
$\textstyle\sum B_{mn}^0 b_m^0 b_n^0$	0.33(8)	2.8(1.7)	8(19)
f(0)	0.00(4)	0.20(14)	0.36(27)
ı +	0.205/15)	0.407(15)	0.400(15)

Table XIII
of arXiv:1503.07839
(FNAL/MILC Coll.)

f(0)	0.00(4)	0.20(14)	0.36(27)
b_0^+	0.395(15)	0.407(15)	0.408(15)
b_1^+	-0.93(11)	-0.65(16)	-0.60(21
b_2^+	-1.6(1)	-0.5(9)	-0.2(1.4)
b_3^+		0.4(1.3)	3(4)
b_4^+			5(5)
b_0^0	0.515(19)	0.507(22)	0.511(24
b_1^0	-1.84(10)	-1.77(18)	-1.69(22
b_2^0	-0.14(25)	1.3(8)	2(1)
b_3^0		4(1)	7(5)
b_4^0			3(9)

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

 $f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$
 $f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$

It seems that the mean value and the uncertainty are not stable under variation of the truncation order...

Fit	$N_z = 3$	$N_z=4$	$N_z = 5$
$\chi^2/{ m dof}$	2.5	0.64	0.73
dof	6	4	2
p	0.02	0.63	0.48
$\textstyle\sum B_{mn}^+b_m^+b_n^+$	0.11(2)	0.016(5)	1.0(2.3)
$\textstyle\sum B^0_{mn}b^0_mb^0_n$	0.33(8)	2.8(1.7)	8(19)
f(0)	0.00(4)	0.20(14)	0.36(27)
b_0^+	0.395(15)	0.407(15)	0.408(15)

Table XIII
of arXiv:1503.07839
(FNAL/MILC Coll.)

_	mn m n	(-)	- (- (-)
	f(0)	0.00(4)	0.20(14)	0.36(27)
	b_0^+	0.395(15)	0.407(15)	0.408(15)
	b_1^+	-0.93(11)	-0.65(16)	-0.60(21)
	b_2^+	-1.6(1)	-0.5(9)	-0.2(1.4)
	b_3^+		0.4(1.3)	3(4)
	b_4^+			5(5)
	b_0^0	0.515(19)	0.507(22)	0.511(24)
	b_1^0	-1.84(10)	-1.77(18)	-1.69(22)
	b_2^0	-0.14(25)	1.3(8)	2(1)
	b_3^0		4(1)	7(5)
	b_4^0			3(9)

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

DM result

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

$$f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$$

It seems that the mean value and the uncertainty are not stable under variation of the truncation order...

The DM approach is independent of this issue!!!

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

Table XIX
of arXiv:1501.05363
(RBC/UKQCD Coll.)

$$f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$$

			$f_+^{B\pi}$						$f_0^{B\pi}$					
K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn}b_mb_n$	K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn}b_mb_n$	$f(q^2 = 0)$	$\chi^2/{ m dof}$	p
1	0.447(36)				0.00394(63)							0.447(36)	4.02	2%
2	0.410(39)	-1.30(52)			0.0120(59)							0.241(83)	0.30	58%
3	0.420(43)	-1.46(59)	-4.7(7.2)		0.15(42)							0.07(32)		
						1	0.460(61)				0.0225(60)	0.460(61)	90.1	0%
						2	0.516(61)	-4.09(55)			0.408(63)	-0.074(73)	0.03	87%
						3	0.516(61)	-3.94(97)	0.7(3.8)		0.32(41)	-0.02(28)		
2	0.366(37)	-2.79(54)			0.0337(85)	2	0.587(58)	-3.33(38)			0.346(55)	0.040(65)	6.18	0%
3	0.427(40)	-1.62(46)	-7.7(1.5)		0.38(15)	2	0.521(60)	-4.03(52)			0.404(62)	-0.066(70)	0.10	91%
2	0.410(39)	-1.24(51)			0.0113(56)	3	0.520(60)	-3.12(42)	4.5(1.3)		0.41(17)	0.248(82)	0.58	56%
3	0.424(41)	-1.50(57)	-6.0(5.0)		0.24(38)	3	0.519(60)	-3.81(81)	1.2(3.4)		0.27(25)	0.01(24)	0.07	79%

Same considerations developed for the FNAL/MILC case...

Table XIX
of arXiv:1501.05363
(RBC/UKQCD Coll.)

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

$$f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$$

			$f_+^{B\pi}$						$f_0^{B\pi}$					
K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn}b_mb_n$	K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn}b_mb_n$	$f(q^2 = 0)$	$\chi^2/{ m dof}$	p
1	0.447(36)				0.00394(63)							0.447(36)	4.02	2%
2	0.410(39)	-1.30(52)			0.0120(59)							0.241(83)	0.30	58%
3	0.420(43)	-1.46(59)	-4.7(7.2)		0.15(42)							0.07(32)		
						1	0.460(61)				0.0225(60)	0.460(61)	90.1	0%
						2	0.516(61)	-4.09(55)			0.408(63)	-0.074(73)	0.03	87%
						3	0.516(61)	-3.94(97)	0.7(3.8)		0.32(41)	-0.02(28)		
2	0.366(37)	-2.79(54)			0.0337(85)	2	0.587(58)	-3.33(38)			0.346(55)	0.040(65)	6.18	0%
3	0.427(40)	-1.62(46)	-7.7(1.5)		0.38(15)	2	0.521(60)	-4.03(52)			0.404(62)	-0.066(70)	0.10	91%
2	0.410(39)	-1.24(51)	, ,		0.0113(56)	3	0.520(60)	-3.12(42)	4.5(1.3)		0.41(17)	0.248(82)	0.58	56%
3	0.424(41)	-1.50(57)	-6.0(5.0)		0.24(38)	3	0.519(60)	-3.81(81)	1.2(3.4)		0.27(25)	$0.01(\dot{24})^{'}$	0.07	79%

Same considerations developed for the FNAL/MILC case...

Table XIX
of arXiv:1501.05363
(RBC/UKQCD Coll.)

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

DM result

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

$$f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$$

			$f_+^{B\pi}$						$f_0^{B\pi}$					
K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn}b_mb_n$	K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn}b_mb_n$	$f(q^2 = 0)$	$\chi^2/{ m dof}$	p
1	0.447(36)				0.00394(63)							0.447(36)	4.02	2%
2	0.410(39)	-1.30(52)			0.0120(59)							0.241(83)	0.30	58%
3	0.420(43)	-1.46(59)	-4.7(7.2)		0.15(42)							0.07(32)		
						1	0.460(61)				0.0225(60)	0.460(61)	90.1	0%
						2	0.516(61)	-4.09(55)			0.408(63)	-0.074(73)	0.03	87%
						3	0.516(61)	-3.94(97)	0.7(3.8)		0.32(41)	-0.02(28)		
2	0.366(37)	-2.79(54)			0.0337(85)	2	0.587(58)	-3.33(38)			0.346(55)	0.040(65)	6.18	0%
3	0.427(40)	-1.62(46)	-7.7(1.5)		0.38(15)	2	0.521(60)	-4.03(52)			0.404(62)	-0.066(70)	0.10	91%
2	0.410(39)	-1.24(51)			0.0113(56)	3	0.520(60)	-3.12(42)	4.5(1.3)		0.41(17)	0.248(82)	0.58	56%
3	0.424(41)	-1.50(57)	-6.0(5.0)		0.24(38)	3	0.519(60)	-3.81(81)	1.2(3.4)		0.27(25)	0.01(24)	0.07	79%

Important issue: the DM method equivalent to the results of **all** possible fits which satisfy unitarity and at the same time reproduce exactly the input data

How to build up the *combined* case

FFs with mean values $x_i^{(k)}$ and uncertainties $\sigma_i^{(k)}$ $(k=1,\cdots,N)$

Mean values and uncertainties of the new combined values

Cov. Matrices of the k-th LQCD computation

Covariance matrix of the new combined values

$$C_{ij} \equiv \frac{1}{N} \sum_{k=1}^{N} C_{ij}^{(k)} + \frac{1}{N} \sum_{k=1}^{N} (x_i^{(k)} - x_i)(x_j^{(k)} - x_j)$$

Conservative choice in arXiv:2202.10285

Bin-per-bin | Vub | with new JLQCD data

The bands are the results of correlated weigthed averages:

$$|V_{ub}|_n = \frac{\sum_{i,j} (\mathbf{C}^{-1})_{ij} |V_{ub}|_j}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}, \qquad \sigma^2_{|V_{ub}|_n} = \frac{1}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}$$

FINAL VALUE OF the CKM matrix element:

$$|V_{ub}|_{\text{JLQCD}} \times 10^3 = 3.85(51)$$

The Dispersive Matrix (DM) method

Let us examine the case of the production of a pseudoscalar meson (as for the B
ightarrow D case). Supposing to have n LQCD data for the FFs at the quadratic momenta $\{t_1,\cdots,t_n\}$ (hereafter $t\equiv q^2$), we define

$$\mathbf{M} = \begin{pmatrix} \langle \phi f | \phi f \rangle & \langle \phi f | g_{t} \rangle & \langle \phi f | g_{t_{1}} \rangle & \cdots & \langle \phi f | g_{t_{n}} \rangle \\ \langle g_{t} | \phi f \rangle & \langle g_{t} | g_{t} \rangle & \langle g_{t} | g_{t_{1}} \rangle & \cdots & \langle g_{t} | g_{t_{n}} \rangle \\ \langle g_{t_{1}} | \phi f \rangle & \langle g_{t_{1}} | g_{t} \rangle & \langle g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{n}} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle g_{t_{n}} | \phi f \rangle & \langle g_{t_{n}} | g_{t} \rangle & \langle g_{t_{n}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{n}} | g_{t_{n}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle = \int_{|z|=1}^{1} \frac{dz}{2\pi i z} \bar{h}_{1}(z) h_{2}(z) \\ g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{n}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle = \int_{|z|=1}^{1} \frac{dz}{2\pi i z} \bar{h}_{1}(z) h_{2}(z) \\ g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{n}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle = \int_{|z|=1}^{1} \frac{dz}{2\pi i z} \bar{h}_{1}(z) h_{2}(z) \\ g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{n}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle = \int_{|z|=1}^{1} \frac{dz}{2\pi i z} \bar{h}_{1}(z) h_{2}(z) \\ g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{n}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle = \int_{|z|=1}^{1} \frac{dz}{2\pi i z} \bar{h}_{1}(z) h_{2}(z) \\ g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{n}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle = \int_{|z|=1}^{1} \frac{dz}{2\pi i z} \bar{h}_{1}(z) h_{2}(z) \\ g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{n}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle = \int_{|z|=1}^{1} \frac{dz}{2\pi i z} \bar{h}_{1}(z) h_{2}(z) \\ g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{1}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle = \int_{|z|=1}^{1} \frac{dz}{2\pi i z} \bar{h}_{1}(z) h_{2}(z) \\ g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{1}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle = \int_{|z|=1}^{1} \frac{dz}{2\pi i z} \bar{h}_{1}(z) h_{2}(z) \\ g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{1}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{1}} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle g_{t_{1}} | g_{t_{1}} \rangle & \langle g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{1}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{1}} \rangle \end{pmatrix} \begin{pmatrix} \langle h_{1} | h_{2} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{1}} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle g_{t_{1}} | g_{t_{1}} \rangle & \langle g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{1}} \rangle \end{pmatrix} \end{pmatrix}$$

$$\langle h_1 | h_2 \rangle = \int_{|z|=1} \frac{dz}{2\pi i z} \bar{h}_1(z) h_2(z)$$
$$g_t(z) \equiv \frac{1}{1 - \bar{z}(t)z}$$

The conformal variable z is related to the momentum transfer as:

$$z(t) = \frac{\sqrt{\frac{t_{+}-t}{t_{+}-t_{-}}} - 1}{\sqrt{\frac{t_{+}-t}{t_{+}-t_{-}}} + 1}$$
$$t_{\pm} \equiv (m_{B} \pm m_{D})^{2}$$

- 1. z is real
- 2. 1-to-1 correspondence:

$$[0, t_{max}=t_{-}] \Rightarrow [z_{max}, 0]$$

A lot of work in the past:

- L. Lellouch, NPB, 479 (1996), p. 353-391
- C. Bourrely, B. Machet, and E. de Rafael, NPB, 189 (1981), pp. 157 181
- E. de Rafael and J. Taron, PRD, 50 (1994), p. 373-380

The DM method

We also have to define the kinematical functions

$$\mathbf{M} = \begin{pmatrix} \langle \phi f | \phi f \rangle & \langle \phi f | g_{t} \rangle & \langle \phi f | g_{t_{1}} \rangle & \cdots & \langle \phi f | g_{t_{n}} \rangle \\ \langle g_{t} | \phi f \rangle & \langle g_{t} | g_{t} \rangle & \langle g_{t} | g_{t_{1}} \rangle & \cdots & \langle g_{t} | g_{t_{n}} \rangle \\ \langle g_{t_{1}} | \phi f \rangle & \langle g_{t_{1}} | g_{t} \rangle & \langle g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{n}} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle g_{t_{n}} | \phi f \rangle & \langle g_{t_{n}} | g_{t} \rangle & \langle g_{t_{n}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{n}} | g_{t_{n}} \rangle \end{pmatrix}$$

$$\phi_0(z,Q^2) = \sqrt{\frac{2n_I}{3}} \sqrt{\frac{3t_+t_-}{4\pi}} \frac{1}{t_+ - t_-} \frac{1+z}{(1-z)^{5/2}} \left(\beta(0) + \frac{1+z}{1-z}\right)^{-2} \left(\beta(-Q^2) + \frac{1+z}{1-z}\right)^{-2},$$

$$\phi_+(z,Q^2) = \sqrt{\frac{2n_I}{3}} \sqrt{\frac{1}{\pi(t_+ - t_-)}} \frac{(1+z)^2}{(1-z)^{9/2}} \left(\beta(0) + \frac{1+z}{1-z}\right)^{-2} \left(\beta(-Q^2) + \frac{1+z}{1-z}\right)^{-3}, \ \beta(t) \equiv \sqrt{\frac{t_+ - t_-}{t_+ - t_-}}$$

Thus, we need these external inputs to implement our method:

- estimates of the FFs, computed on the lattice, @ $\{t_1,...,t_n\}$: from Cauchy's theorem (for generic m)

$$\langle g_{t_m} | \phi f \rangle = \phi(t_m, Q^2) f(t_m)$$
LQCD data!

$$\langle g_{t_m}|g_{t_l}\rangle = \frac{1}{1-\bar{z}(t_l)z(t_m)}$$

- non-perturbative values of the susceptibilities, since from the dispersion relations (calling Q^2 the Euclidean quadratic momentum)

$$\chi(Q^2) \ge \overline{\langle \phi f | \phi f \rangle}$$

Since the susceptibilities are computed on the lattice, we can in principle use whatever value of \mathbb{Q}^2 !

The DM method

In the presence of **poles** @ $t_{P1}, t_{P2}, \cdots ..., t_{PN}$:

$$\mathbf{M} = \begin{pmatrix} \langle \phi f | \phi f \rangle & \langle \phi f | g_{t} \rangle & \langle \phi f | g_{t_{1}} \rangle & \cdots & \langle \phi f | g_{t_{n}} \rangle \\ \langle g_{t} | \phi f \rangle & \langle g_{t} | g_{t} \rangle & \langle g_{t} | g_{t_{1}} \rangle & \cdots & \langle g_{t} | g_{t_{n}} \rangle \\ \langle g_{t_{1}} | \phi f \rangle & \langle g_{t_{1}} | g_{t} \rangle & \langle g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{n}} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle g_{t_{n}} | \phi f \rangle & \langle g_{t_{n}} | g_{t} \rangle & \langle g_{t_{n}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{n}} | g_{t_{n}} \rangle \end{pmatrix}$$

$$\phi(z, q^2) \to \phi_P(z, q^2) \equiv \phi(z, q^2) \times \frac{z - z(t_{P1})}{1 - \bar{z}(t_{P1})z} \times \dots \times \frac{z - z(t_{PN})}{1 - \bar{z}(t_{PN})z}$$

Thus, we need these external inputs to implement our method:

- estimates of the FFs, computed on the lattice, @ $\{t_1,...,t_n\}$: from Cauchy's theorem (for generic m)

$$\langle g_{t_m} | \phi f \rangle = \phi(t_m, Q^2) f(t_m)$$
LQCD data!

$$\langle g_{t_m}|g_{t_l}\rangle = \frac{1}{1-\bar{z}(t_l)z(t_m)}$$

- non-perturbative values of the susceptibilities, since from the dispersion relations (calling \mathbb{Q}^2 the Euclidean quadratic momentum)

$$\chi(Q^2) \ge \langle \phi f | \phi f \rangle$$

The DM method

The positivity of the original inner products guarantee that $\det \mathbf{M} \geq 0$: the solution of this inequality can be computed analitically, bringing to

$$\beta = \frac{1}{d(z)\phi(z)} \sum_{j=1}^{N} \frac{f_j \phi_j d_j}{z - z_f} \qquad \gamma = \frac{1}{d^2(z)\phi^2(z)} \frac{1}{1 - z^2} \left[\chi - \sum_{i,j=1}^{N} \frac{f_i f_j \phi_i \phi_j d_i d_j}{1 - z_i z_j} \frac{(1 - z_i^2)(1 - z_j^2)}{1 - z_i z_j} \right]$$

UNITARITY FILTER: unitarity is satisfied if γ is semipositive definite, namely if

$$\chi \ge \sum_{i,j=1} N f_i f_j \phi_i \phi_j d_i d_j \frac{(1-z_i^2)(1-z_j^2)}{1-z_i z_j}$$

This is a **parametrization-independent unitarity test** of the LQCD input data

Kinematical Constraints (KCs)

REMINDER: after the unitarity filter we were left with $N_U < N$ survived events!!!

Let us focus on the pseudoscalar case. Since by construction the following kinematical constraint holds

$$f_0(0) = f_+(0)$$

we will filter only the $N_{KC} < N_U$ events for which the two bands of the FFs intersect each other @ t = 0. Namely, for each of these events we also define

$$\phi_{lo} = \max[F_{+,lo}(t=0),F_{0,lo}(t=0)] \qquad \qquad \text{From WE theorem} \\ \phi_{lo} = \min[F_{+,up}(t=0),F_{0,up}(t=0)] \qquad \qquad \phi_{lo} = \min[F_{+,up}(t=0),F_{0,up}(t=0)] \qquad \qquad \text{One then defines} \\ f_{0}(q^{2}) = f_{+}(q^{2}) + \frac{q^{2}}{m_{B}^{2} - m_{D}^{2}} f_{-}(q^{2})$$

$$\langle D(p_D) | V^{\mu} | B(p_B) \rangle = f^+(q^2) \left(p_B^{\mu} + p_D^{\mu} - \frac{m_B^2 - m_D^2}{q^2} q^{\mu} \right) + f^0(q^2) \frac{m_B^2 - m_D^2}{q^2} q^{\mu}$$

Kinematical Constraints (KCs)

We then consider a modified matrix

$$\mathbf{M_{C}} = \begin{pmatrix} \phi f | \phi f \rangle & \langle \phi f | g_{t} \rangle & \langle \phi f | g_{t_{1}} \rangle & \cdots & \langle \phi f | g_{t_{n}} \rangle & \langle \phi f | g_{t_{n+1}} \rangle \\ \langle g_{t} | \phi f \rangle & \langle g_{t} | g_{t} \rangle & \langle g_{t} | g_{t_{1}} \rangle & \cdots & \langle g_{t} | g_{t_{n}} \rangle & \langle g_{t} | g_{t_{n+1}} \rangle \\ \langle g_{t_{1}} | \phi f \rangle & \langle g_{t_{1}} | g_{t} \rangle & \langle g_{t_{1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{1}} | g_{t_{n}} \rangle & \langle g_{t_{1}} | g_{t_{n+1}} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle g_{t_{n}} | \phi f \rangle & \langle g_{t_{n}} | g_{t} \rangle & \langle g_{t_{n}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{n}} | g_{t_{n}} \rangle & \langle g_{t_{n}} | g_{t_{n+1}} \rangle \\ \langle g_{t_{n+1}} | \phi f \rangle & \langle g_{t_{n+1}} | g_{t} \rangle & \langle g_{t_{n+1}} | g_{t_{1}} \rangle & \cdots & \langle g_{t_{n+1}} | g_{t_{n}} \rangle & \langle g_{t_{n+1}} | g_{t_{n+1}} \rangle \end{pmatrix}$$

with t_{n+1} = 0. Hence, we compute the new lower and upper bounds of the FFs in this way. For each of the N_{KC} events, we extract $N_{KC,2}$ values of $f_0(0)=f_+(0)\equiv f(0)$ with uniform distribution defined in the range $[\phi_{lo},\phi_{up}]$. Thus, for both the FFs and for each of the N_{KC} events we define

$$F_{lo}(t) = \min[F_{lo}^{1}(t), F_{lo}^{2}(t), \cdots, F_{lo}^{N_{KC,2}}(t)],$$

$$F_{up}(t) = \max[F_{up}^{1}(t), F_{up}^{2}(t), \cdots, F_{up}^{N_{KC,2}}(t)]$$

Non-perturbative computation of the susceptibilities

In arXiv:2105.07851, we have presented the results of the first computation on the lattice of the susceptibilities for the $b \rightarrow c$ quark transition, using the N_f =2+1+1 gauge ensembles generated by ETM Collaboration.

How are they defined? The starting point is the HVP tensor:

$$\Pi_{\mu\nu}^{V}(Q) = \int d^{4}x \ e^{-iQ\cdot x} \langle 0|T \left[\bar{b}(x)\gamma_{\mu}^{E}c(x) \ \bar{c}(0)\gamma_{\nu}^{E}b(0)\right] |0\rangle
= -Q_{\mu}Q_{\nu}\Pi_{0+}(Q^{2}) + (\delta_{\mu\nu}Q^{2} - Q_{\mu}Q_{\nu})\Pi_{1-}(Q^{2})$$

To compute the susceptibilities on the lattice, we start from the Euclidean correlators:

$$\chi_{0^{+}}(Q^{2}) \equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2}\Pi_{0^{+}}(Q^{2}) \right] = \int_{0}^{\infty} dt \ t^{2}j_{0}(Qt) \ C_{0^{+}}(t) \ , \qquad \qquad C_{0^{+}}(t) = \int d^{3}x \langle 0|T \left[\bar{b}(x)\gamma_{0}c(x) \ \bar{c}(0)\gamma_{0}b(0) \right] |0\rangle \ , \\ \chi_{1^{-}}(Q^{2}) \equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2}Q^{2}} \left[Q^{2}\Pi_{1^{-}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \ t^{4} \frac{j_{1}(Qt)}{Qt} \ C_{1^{-}}(t) \qquad \qquad C_{1^{-}}(t) = \frac{1}{3} \sum_{j=1}^{3} \int d^{3}x \langle 0|T \left[\bar{b}(x)\gamma_{j}c(x) \ \bar{c}(0)\gamma_{j}b(0) \right] |0\rangle \ , \\ \chi_{0^{-}}(Q^{2}) \equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2}\Pi_{0^{-}}(Q^{2}) \right] = \int_{0}^{\infty} dt \ t^{2}j_{0}(Qt) \ C_{0^{-}}(t) \ , \qquad \qquad C_{0^{-}}(t) = \int d^{3}x \langle 0|T \left[\bar{b}(x)\gamma_{0}\gamma_{5}c(x) \ \bar{c}(0)\gamma_{0}\gamma_{5}b(0) \right] |0\rangle \ , \\ \chi_{1^{+}}(Q^{2}) \equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2}Q^{2}} \left[Q^{2}\Pi_{1^{+}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \ t^{4} \frac{j_{1}(Qt)}{Qt} \ C_{1^{+}}(t) \qquad \qquad C_{1^{+}}(t) = \frac{1}{3} \sum_{j=1}^{3} \int d^{3}x \langle 0|T \left[\bar{b}(x)\gamma_{j}\gamma_{5}c(x) \ \bar{c}(0)\gamma_{j}\gamma_{5}b(0) \right] |0\rangle \ ,$$

Non-perturbative computation of the susceptibilities

In arXiv:2105.07851, we have presented the results of the first computation on the lattice of the susceptibilities for the $b \rightarrow c$ quark transition, using the N_f =2+1+1 gauge ensembles generated by ETM Collaboration.

How are they defined? The starting point is the HVP tensor:

$$\Pi_{\mu\nu}^{V}(Q) = \int d^{4}x \ e^{-iQ\cdot x} \langle 0|T \left[\bar{b}(x)\gamma_{\mu}^{E}c(x) \ \bar{c}(0)\gamma_{\nu}^{E}b(0)\right] |0\rangle
= -Q_{\mu}Q_{\nu}\Pi_{0+}(Q^{2}) + (\delta_{\mu\nu}Q^{2} - Q_{\mu}Q_{\nu})\Pi_{1-}(Q^{2})$$

To compute the susceptibilities on the lattice, we start from the Euclidean correlators:

$$\chi_{0^{+}}(Q^{2}) \equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2}\Pi_{0^{+}}(Q^{2}) \right] = \int_{0}^{\infty} dt \ t^{2}j_{0}(Qt) \ C_{0^{+}}(t) \ , \qquad \qquad \frac{1}{4} \int_{0}^{\infty} dt' \ t'^{4} \ \frac{j_{1}(Qt')}{Qt'} \left[(m_{b} - m_{c})^{2}C_{S}(t') + Q^{2}C_{0^{+}}(t') \right]$$

$$\chi_{1^{-}}(Q^{2}) \equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2}Q^{2}} \left[Q^{2}\Pi_{1^{-}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \ t^{4} \frac{j_{1}(Qt)}{Qt} \ C_{1^{-}}(t)$$

$$\chi_{0^{-}}(Q^{2}) \equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2}\Pi_{0^{-}}(Q^{2}) \right] = \int_{0}^{\infty} dt \ t^{2}j_{0}(Qt) \ C_{0^{-}}(t) \ , \qquad \qquad \frac{W.\ I.}{4} \int_{0}^{\infty} dt' \ t'^{4} \ \frac{j_{1}(Qt')}{Qt'} \left[(m_{b} + m_{c})^{2}C_{P}(t') + Q^{2}C_{0^{-}}(t') \right]$$

$$\chi_{1^{+}}(Q^{2}) \equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2}Q^{2}} \left[Q^{2}\Pi_{1^{+}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \ t^{4} \frac{j_{1}(Qt)}{Qt} \ C_{1^{+}}(t)$$

Non-perturbative computation of the susceptibilities

The possibility to compute the χ s on the lattice allows us to choose whatever value of Q^2 !!!! (i.e. near the region of production of the resonances)

NOT POSSIBLE IN PERTURBATION THEORY!!!

$$(m_b + m_c)\Lambda_{QCD} << (m_b + m_c)^2 - q^2$$

POSSIBLE IMPROVEMENT IN THE STUDY OF THE FFs through our method!

Work in progress...

To compute the susceptibilities on the lattice, we start from the Euclidean correlators:

$$\chi_{0^{+}}(Q^{2}) \equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2}\Pi_{0^{+}}(Q^{2}) \right] = \int_{0}^{\infty} dt \ t^{2}j_{0}(Qt) \ C_{0^{+}}(t) \ , \qquad \qquad \frac{1}{4} \int_{0}^{\infty} dt' \ t'^{4} \ \frac{j_{1}(Qt')}{Qt'} \left[(m_{b} - m_{c})^{2}C_{S}(t') + Q^{2}C_{0^{+}}(t') \right]$$

$$\chi_{1^{-}}(Q^{2}) \equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2}Q^{2}} \left[Q^{2}\Pi_{1^{-}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \ t^{4} \frac{j_{1}(Qt)}{Qt} \ C_{1^{-}}(t)$$

$$\chi_{0^{-}}(Q^{2}) \equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2}\Pi_{0^{-}}(Q^{2}) \right] = \int_{0}^{\infty} dt \ t^{2}j_{0}(Qt) \ C_{0^{-}}(t) \ , \qquad \qquad \frac{W.\ I.}{4} \int_{0}^{\infty} dt' \ t'^{4} \ \frac{j_{1}(Qt')}{Qt'} \left[(m_{b} + m_{c})^{2}C_{P}(t') + Q^{2}C_{0^{-}}(t') \right]$$

$$\chi_{1^{+}}(Q^{2}) \equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2}Q^{2}} \left[Q^{2}\Pi_{1^{+}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \ t^{4} \frac{j_{1}(Qt)}{Qt} \ C_{1^{+}}(t)$$

ETMC ratio method & final results

For the extrapolation to the physical *b*-quark point we have used the ETMC ratio method:

$$R_j(n;a^2,m_{ud}) \equiv rac{\chi_j[m_h(n);a^2,m_{ud}]}{\chi_j[m_h(n-1);a^2,m_{ud}]} egin{bmatrix}
ho_j[m_h(n)] \
ho_j[m_h(n-1)] \
ho_j[m_h(n-$$

All the details are deeply discussed in *arXiv:2105.07851*. In this way, we have obtained **the first lattice QCD determination of susceptibilities of heavy-to-heavy (and heavy-to-light) transition current densities:**

	Perturbative	With subtraction	Non-perturbative	With subtraction
$\chi_{V_L}[10^{-3}]$	6.204(81)	_	7.58(59)	_
$\chi_{A_L}[10^{-3}]$	24.1	19.4	25.8(1.7)	21.9(1.9)
$\chi_{V_T}[10^{-4} \text{ GeV}^{-2}]$	6.486(48)	5.131(48)	6.72(41)	5.88(44)
$\chi_{A_T}[10^{-4} { m GeV}^{-2}]$	3.894		4.69(30)	

Non-perturbative	With subtraction				
2.04(20)					
2.34(13)					
4.88(1.16)	4.45(1.16)				
4.65(1.02)					

Bigi, Gambino PRD '16 Bigi, Gambino, Schacht PLB '17 Bigi, Gambino, Schacht JHEP '17