Precision measurements of rare pion decays with the PIONEER experiment

Dieter Ries d.ries@uni-mainz.de

PIONEER Collaboration

July 7, 2022

Pion decays back then

Theory of the Fermi Interaction

R. P. FEYNMAN AND M. GELL-MANN California Institute of Technology, Pasadena, California (Received September 16, 1957)

Experimentally 16 no $\pi \rightarrow e + \nu$ have been found, indicating that the ratio is less than 10^{-5} . This is a very serious discrepancy. The authors have no idea on how it can be resolved.

$$R^{\pi} = \frac{\pi \to e\nu(\gamma)}{\pi \to \mu\nu(\gamma)}$$

=
$$(1.23534 \pm 0.00015) \times 10^{-4}$$
 (±0.012%) (SM)
= $(1.2327 \pm 0.0023) \times 10^{-4}$ (±0.187%) (exp.)

$$R^{\pi} = \frac{\pi \to e\nu(\gamma)}{\pi \to \mu\nu(\gamma)}$$

=
$$(1.23534 \pm 0.00015) \times 10^{-4}$$
 (±0.012%) (SM)
= $(1.2327 \pm 0.0023) \times 10^{-4}$ (±0.187%) (exp.)

- One of the most precisely known observable involving guarks in the SM!
- Experimental uncertainty 15x larger than theoretical!

A new experiment

Physics cases for a new R^{π} measurement:

- Testing Lepton Flavor Universality
 - Several tensions in flavour sector
 - μ g-2, B decays, CKM unitarity

A new experiment

Physics cases for a new R^{π} measurement:

- Testing Lepton Flavor Universality
 - Several tensions in flavour sector
 - μ g-2, B decays, CKM unitarity
- New Physics at high mass scales
 - R^{π} extremely sensitive to new (pseudo)scalar couplings (e.g. charged Higgs, heavy neutrinos, ...)

A new experiment

Physics cases for a new R^{π} measurement:

- Testing Lepton Flavor Universality
 - Several tensions in flavour sector
 - μ g-2, B decays, CKM unitarity
- New Physics at high mass scales
 - R^{π} extremely sensitive to new (pseudo)scalar couplings (e.g. charged Higgs, heavy neutrinos, ...)

Physics cases for a new π beta decay measurement:

- Testing CKM unitarity via V_{us}/V_{ud}
- Direct determination of V_{ud}

PIONEER

Goals:

- measure R^{μ} to 0.01% relative precision (Phase I)
- measure BR($\pi^+ \rightarrow \pi^0 e^+ \nu$) to 0.2 % (Phase II)
- measure BR($\pi^+ \rightarrow \pi^0 e^+ \nu$) to 0.06 % (Phase III)

PIONEER

Goals:

- measure R^{μ} to 0.01% relative precision (Phase I)
- measure BR($\pi^+ \rightarrow \pi^0 e^+ \nu$) to 0.2 % (Phase II)
- measure BR($\pi^+ \to \pi^0 e^+ \nu$) to 0.06 % (Phase III)

Needs high intensity π^+ beam (Phase 1: $3 \times 10^5 \, \text{s}^{-1}$. Phases II/III: $2 \times 10^{7} \, \text{s}^{-1}$)

Goals:

- measure R^{μ} to 0.01% relative precision (Phase I)
- measure BR($\pi^+ \to \pi^0 e^+ \nu$) to 0.2% (Phase II)
- measure BR($\pi^+ \rightarrow \pi^0 e^+ \nu$) to 0.06% (Phase III)

Needs high intensity π^+ beam (Phase 1: $3 \times 10^5 \, \text{s}^{-1}$, Phases II/III: $2 \times 10^7 \, \text{s}^{-1}$)

Phase I approved to run at PSI (Proposal: https://arxiv.org/abs/2203.01981)

$$R^{\pi} = \frac{\pi \to e\nu(\gamma)}{\pi}$$
: how is it measured

$$\pi \to \mu \nu(\gamma)$$
. $\pi \to e^{\nu \bar{\nu}}$

 $R^{\pi} = \frac{\pi \to e\nu(\gamma)}{\pi \to \mu\nu(\gamma)} : \text{how is it measured?}$ $\lim_{\mu \to e\nu\bar{\nu}} \text{What } \pi \text{ decay to "normally": } B(\pi^{+} \to \mu^{+}\nu(\gamma)) = 0.999877 \pm 0.0000004$ $\text{Helicity suppressed decay: } B(\pi^{+} \to e^{+}\nu_{e}(\gamma)) = (1.2327 \pm 0.00023) \times 10^{-4}$

Measure precisely e^+ energy spectrum and $t_{e^+} - t_{\pi^+}$ ⇒ different time and energy spectra - discrimination between the two decays

C. Malbrunot

The low energy tail

Main systematic effect: Low energy tail of positron spectrum from $\pi \to e\nu$

Caused by:

- finite energy resolution
- · energy loss in dead material
- shower leakage
- · geometrical acceptance
- radiative decays
- PIENU experiment: photo-nuclear interactions ($^{127}I(\gamma,n)$)
- •

Apparatus overview

ATAR

- High longitudinal segmentation
- As little material as possible

- Fast collection time
- Large dynamic range

- Stack of low gain avalanche diodes (LGADs)
- 48 layers, 120 μm thickness per layer
- 100 strips per layer, 20 mm length, 200 μm pitch
- 20 mm x 20 mm area
- read out using flex cables to the side, then back
- Development led by UC Santa Cruz

- Correlation of ATAR hit to CALO shower
- High speed
- As little material as possible

Preliminary concept:

- Cylindrical 2-layer Resistive Micro Well (μRWELL)
- Development led by Stony Brook University

PIONEER

Apparatus 0000● Collaboration _

CALO

 $25 X_0$, 3π sr calorimeter

High energy resolution, fast, symmetric → Much better tail suppression

Option 1: LXe

Advantages:

- uniform/homogeneous volume
- fast response
- Excellent energy resolution

Question marks

- (un)known issues with VUV SiPM
- handling pileup
- cost

Option 2: LYSO or combined LYSO/CsI

Advantages:

- Not cryogenic
- fast response
- "natural segmentation"

Question marks

- energy resolution
- possible to make long crystals?
- cost

C. Malbrunot

PIONEER Collaboration

W. Altmannshofer, H. Binney, E. Blucher, D. Bryman, 4,5 L. Caminada, 6 S. Chen, V. Cirigliano, S. Corrodi, A. Crivellin, 6, 10, 11 S. Cuen-Rochin, 12 A. DiCanto, ¹³ L. Doria, ¹⁴ A. Gaponenko, ¹⁵ A. Garcia, ² L. Gibbons, ¹⁶ C. Glaser, ¹⁷ M. Escobar Godov, D. Göldi, S. Gori, T. Gorringe, D. Hertzog, Z. Hodge, M. Hoferichter.²⁰ S. Ito.²¹ T. Iwamoto.²² P. Kammel.² B. Kiburg.¹⁵ K. Labe.¹⁶ J. LaBounty,² U. Langenegger,⁶ C. Malbrunot,⁵ S.M. Mazza,¹ S. Mihara,²¹ R. Mischke,⁵ T. Mori, 22 J. Mott, 15 T. Numao, W. Ootani, 22 J. Ott, 1 K. Pachal, 5 C. Polly, 15 D. Počanić, ¹⁷ X. Oian, ¹³ D. Ries, ²³ R. Roehnelt, ² B. Schumm, ¹ P. Schwendimann, ² A. Seiden, A. Sher, R. Shrock, A. Soter, T. Sullivan, M. Tarka, V. Tischenko, A. Seiden, A. Seiden, A. Sher, R. Shrock, A. Soter, R. Sullivan, R. Sullivan, A. Sher, R. Shrock, M. Tarka, L. Shrock, A. Soter, R. Shrock, A. Soter, R. Shrock, R. A. Tricoli, 13 B. Velghe, 5 V. Wong, 5 E. Worcester, 13 M. Worcester, 26 and C. Zhang 13

more collaborators welcome!

- ¹ University of California Santa Cruz
- ² Dpt Phys. University of Washington
- 3 University of Chicago
- ⁴ University of British Columbia
- 5 TRIUME
- ⁶ Paul Scherrer Institute
- ⁷ Tsinghua University
- 8 Institute for Nucl. Theory, University of Washington
- 9 Argonne National Laboratory
- 10 University of Zurich 11 CERN
- 12 Tec de Monterrey
- 13 Brookhaven National Laboratory
- 14 PRISMA+ Cluster of Excellence, University of Mainz 15 Fermilah
- ¹⁶ Cornell University
- 17 University of Virginia
- 18 ETH Zurich
- 19 University of Kentucky
- 20 University of Bern
- 21 KFK
- 22 University of Tokyo
- 23 University of Mainz
- 24 Stony Brook University
- 25 University of Victoria
- 26 Inst Div BNI

Summary

- Pion decay: long history of challenging the SM
- PIONEER: Major new pion decay experiment pushing state of the art technology into low energy precision physics
- · Goals:
 - R^{π} at 0.01%
 - Pion beta decay at 0.06 % (in 2 steps)
- Approved to run at PSI, first test beam time just finished
- Time scale: 10-15 years
- New collaborators welcome!