Angular analysis of $\bar{B} \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}$ with hadronic tagging at $B A B A R$

Biplab Dey

(on behalf of the BaBar Collaboration)
ICHEP, Bologna, 2022

$\left|V_{u b}\right|-\left|V_{c b}\right|:$ TENSIONS IN TWO CRITICAL PARAMETERS

- Circa 2017, Grinstein/ Gambino: $\left|V_{c b}\right|$ "resolved" by zero-recoil extrapolation issue?
- 2019: back to the drawing board.
- 2021/22: lattice $w>1$ FF's.
- Note: some tension in $\left|V_{c b}\right|$ between $B \rightarrow D^{*}$ and $B \rightarrow D$.
- Stress-testing HQET and flavor-SU(3) $\left(B \rightarrow D^{(*)}\right.$ vs $\left.B_{s} \rightarrow D_{s}^{(*)}\right)$.
- Implications of the form-factors on SL LFUV.

RECAP OF BABAR-19 $B \rightarrow D^{*}$ PAPER [PRL123, 091801 (2019)]

- First full 4-d $\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}$ angular analysis with hadronic tagging.
- Single missing neutrino fully reconstructed $\left(U=E_{\nu}-p_{\nu}\right)$.

- Extremely clean. Percent level resolutions in angular variables.
- ~6000 signal events. $N=2$ (linear) BGL (hep-ph/9508211) fit adequate.
- Negligible effect on extracted $\left|V_{c b}\right|$ between BGL and CLN FF parameterisations.

HQET FF's And THE RATIO OBSERVABLES

- H_{λ} amplitudes are written in terms of four form-factors.
- HQET: FF's only depend on w, the gamma-factor between B and recoiling D^{*}.

$$
\begin{aligned}
\frac{\left\langle D^{*}\left(v^{\prime}, \varepsilon\right)\right| V^{\mu}|\bar{B}(v)\rangle}{\sqrt{m_{B} m_{D^{*}}}} & =i h_{V}(w) \epsilon^{\mu \nu \alpha \beta} \varepsilon_{\nu}^{*} v_{\alpha}^{\prime} v_{\beta} & A_{1} & =\frac{w+1}{2} r^{\prime} h_{A_{1}} \\
\frac{\left\langle D^{*}\left(v^{\prime}, \varepsilon\right)\right| A^{\mu}|\bar{B}(v)\rangle}{\sqrt{m_{B} m_{D^{*}}}} & =h_{A_{1}}(w)(w+1) \varepsilon^{* \mu}-h_{A_{2}}(w)\left(\varepsilon^{*} \cdot v\right) v^{\mu} & A_{2} & =\frac{r h_{A_{2}}+h_{A_{3}}}{r^{\prime}} \equiv \frac{R_{2} h_{A_{1}}}{r^{\prime}} \\
& -h_{A_{3}}(w)\left(\varepsilon^{*} \cdot v\right) v^{\prime \mu} & V & =\frac{h_{V}}{r^{\prime}}
\end{aligned} \equiv \frac{R_{1} h_{A_{1}}}{r^{\prime}}
$$

- HQS limit: $\left\{h_{V}, h_{A_{1}}, h_{A_{3}}\right\} \rightarrow \zeta(w)$ and $h_{A_{2}} \rightarrow 0$.
- The two ratio observables $R_{1,2}$ have reduced hadronic uncertainties.
- BGL basis $\left\{f_{0}, F_{1}, g, F_{2}\right\}$: rewrites $h_{V, A_{1}, A_{2}, A_{3}}$.

BABAR-19: DEVIATIONS IN $R_{1,2}$

- Figure as is, from the BABAR-19 paper using BGL fits.
- "CLN-WA" used HFLAV16 numbers.
- CLN'97: original paper w/o uncertainties.

$R_{1,2}$ CONUNDRUM (CONTD.)

- $R_{1}(1)$ moved from 1.404 ± 0.032 (HFLAV16) to 1.269 ± 0.026 (HFLAV21, BABAR-19 not included). Almost 3.3σ change! Latest number is close to BABAR-19.
- Experimentally, needs to be resolved: $R_{2}(1) \sim\left[h_{A_{2}}, h_{A_{3}}\right] / h_{A_{1}}$. HFLAV21 (excluding BABAR-19) quotes $R_{2}(1) \sim 0.85$.

Further developments: LAttice $w>1$ DAta

- Significant inputs from lattice now in $w>1$ for $B \rightarrow D^{*}$. Independent validations of FFs.
- FNAL/MILC and JLQCD $\left(B \rightarrow D^{*}\right)$ and $\operatorname{HPQCD}\left(B_{s}^{0} \rightarrow D_{s}^{*}\right.$, full $\left.q^{2}\right)$. Lots of checks possible.
- Checks for flavor $\mathrm{SU}(3)$ in $B_{(s)} \rightarrow D_{(s)}^{*}$. Include BABAR $B \rightarrow D$ data.
- Goal: joint $B \rightarrow D^{(*)}$ HQET fits including all information, to interpret the FFs.
- Caveat: everything shown today is preliminary.

$B \rightarrow D^{*}$ BABAR + LATTICE FITS: SETUP

- Dataset remains the same as in BABAR-19 paper $\left(N_{\text {sig }} \sim 6000\right)$.
- Main change is access to $N=3$ BGL expansion due to including the new lattice $w>1$ data w / o breaking unitarity conditions.
- $\{3,3,3,2\} z$ expansion configuration for BGL basis $\left\{f_{0}, F_{1}, g, F_{2}\right\}$.
- F_{2} is least constrained. Lattice-only.
- Try various combinations of $B A B A R+$ lattice:
- BaBar+lattice fit result is in green.
- HPQCD data is blue
- FNAL/MILC data is red.
- JLQCD data is black.
- HPQCD $B_{s} \rightarrow D_{s}^{*}$ FF converted to $B \rightarrow D^{*}$ using flavor SU3.

BaBar + HPQCD [FNAL/MILC, JLQCD]

R_{0} :

R_{1} :

R_{2} :

July 8, 2022

BaBar + FNAL/MILC [HPQCD, JLQCD]

R_{0} :

R_{1} :

R_{2} :

July 8, 2022

BaBar + FNAL/MILC + HPQCD [JLQCD]

R_{0} :

R_{1} :

R_{2} :

BaBar + FNAL/MILC + HPQCD + JLQCD

R_{0} :

R_{1} :

R_{2} :

July 8, 2022

TAKEAWAYS: FORM-FACTORS

- Adding three new independent lattice data over the past two years did not change the overall conclusions in BABAR-2019 paper.
- Especially true in the "clean" ratio observables $R_{1,2}$.
- Some movement among different lattice calculations.
- HPQCD errors are largest and trends show some deviations from $B A B A R+$ FNAL/MILC+JLQCD. Flavor SU3 violation for $B \rightarrow D^{*}$?
- These combined fits are most precise, and also robust (no funny instabilities).

Fit qualities

Type	BABAR NLL	MILC χ^{2}	HPQCD χ^{2}	JLQCD χ^{2}
HPQCD	103441	69.7	3.6	25.1
MILC+JLQCD	103441	14.2	20.2	5.7
ALL	103443	13.1	8.0	5.9

- Also FNAL/MILC uncertainties as provided are smallest.
- Overall, BABAR can accommodate the new lattice data $\left(\chi^{2} / \mathrm{ndf}<1\right)$ quite well.

Effect of lattice on $\left|V_{c b}\right|$

- Use HFLAV-16 $B \rightarrow D^{*} \mathrm{BFs}$, but include all lattice data now.
- $\left|V_{c b}\right| \times 10^{3}$ moves from 38.36 ± 0.90 to 38.93 ± 0.68. Not sensitive to zero-recoil extrapolation.

Effect of lattice on $\left|V_{c b}\right|$

- Use HFLAV-16 $B \rightarrow D^{*}$ BFs, but include all lattice data now.
- $\left|V_{c b}\right| \times 10^{3}$ moves from 38.36 ± 0.90 to 38.93 ± 0.68. Not sensitive to zero-recoil extrapolation.
- Using the updated HFLAV-21 BFs, the number is 39.83 ± 0.71.
- Uncertainties on the BGL coefficients certainly improves the lattice data. No issue with unitarity as well.

Charged RH current search

- Heavy RH W^{-}boson: deviation from pure $(V-A)$ structure.
- Parameterization: $h_{V} \rightarrow h_{V, S M}\left(1+\varepsilon_{R}\right)$. Axial FF's unchanged.
- Smoking gun: strong discrepancy between lattice (pure SM) and data $(\mathrm{SM}+\mathrm{NP})$ in $R_{1}(1)$, along with good agreement in $R_{2}(1)$.
- Lattice fixing the SM FF's allows ε_{R} searches from just the shape (independent of $\left|V_{c b}\right|$).
- BABAR + lattice fits converged, blinded.

SUMMARY AND NEXT STEPS

- BABAR-19 FF $+\left|V_{c b}\right|$ conclusions very robust. Survives checks from new lattice data and combined BABAR-lattice results most precise FFs.
- BABAR $B \rightarrow D$ data getting ready to be incorporated in joint $B \rightarrow D^{(*)}$ HQET fits.
- Stringent test for HQET: can adding higher order corrections allow fitting the data.

ThE GENERIC 4-D PDF [PRD 92, 033013 (2015)]

- Differential rate (4-d fit pdf):

$$
\frac{d \Gamma}{d q^{2} d \Omega} \propto \sum_{i=1}^{14} f_{i}(\Omega) \Gamma_{i}\left(q^{2}\right)
$$

- Transversity q^{2} amplitudes:

$$
\begin{aligned}
H_{0}\left(q^{2}\right) & \equiv h_{0} \\
H_{\{\|, \perp\}}\left(q^{2}\right) & \equiv h_{\{\|, \perp\}} \underbrace{e^{i \delta_{\{\|, \perp\}}}}_{\text {NP phase }}
\end{aligned}
$$

- Orthonormal angular basis:
- $Y_{l}^{m} \equiv Y_{l}^{m}\left(\theta_{l}, \chi\right)$
- $P_{l}^{m} \equiv \sqrt{2 \pi} Y_{l}^{m}\left(\theta_{V}, 0\right)$

i	$f_{i}(\Omega)$	$\Gamma_{i}^{\operatorname{tr}}\left(q^{2}\right) /\left(\mathbf{k} q^{2}\right)$		
1	$P_{0}^{0} Y_{0}^{0}$	$h_{0}^{2}+h_{\\|}^{2}+h_{\perp}^{2}$		
2	$P_{2}^{0} Y_{0}^{0}$	$-\frac{1}{\sqrt{5}}\left(h_{\\|}^{2}+h_{\perp}^{2}\right)+\frac{2}{\sqrt{5}} h_{0}^{2}$		
3	$P_{0}^{0} Y_{2}^{0}$	$\frac{1}{2 \sqrt{5}}\left[\left(h_{\\|}^{2}+h_{\perp}^{2}\right)-2 h_{0}^{2}\right]$		
4	$P_{2}^{0} Y_{2}^{0}$	$-\frac{1}{10}\left(h_{\\|}^{2}+h_{\perp}^{2}\right)-\frac{2}{5} h_{0}^{2}$		
5	$P_{2}^{1} \sqrt{2} \operatorname{Re}\left(Y_{2}^{1}\right)$	$-\frac{3}{5} h_{\\|} h_{0} \cos \delta_{\\|}$		
6	$P_{2}^{1} \sqrt{2} \operatorname{Im}\left(Y_{2}^{1}\right)$	$\frac{3}{5} h_{\perp} h_{0} \sin \delta_{\perp}$		
7	$P_{0}^{0} \sqrt{2} \operatorname{Re}\left(Y_{2}^{2}\right)$	$\left.-\frac{3}{2 \sqrt{15}} h_{\\|}^{2}-h_{\perp}^{2}\right)$		
8	$P_{2}^{0} \sqrt{2} \operatorname{Re}\left(Y_{2}^{2}\right)$	$\frac{\sqrt{3}}{10}\left(h_{\\|}^{2}-h_{\perp}^{2}\right)$		
9	$P_{0}^{0} \sqrt{2} \operatorname{Im}\left(Y_{2}^{2}\right)$	$\sqrt{\frac{3}{5}} h_{\perp} h_{\\|} \sin \left(\delta_{\perp}-\delta_{\\|}\right)$		
10	$P_{2}^{0} \sqrt{2} \operatorname{Im}\left(Y_{2}^{2}\right)$	$-\frac{\sqrt{3}}{5} h_{\perp} h_{\\|} \sin \left(\delta_{\perp}-\delta_{\\|}\right)$		
11	$P_{0}^{0} Y_{1}^{0}$	$-\sqrt{3} h_{\perp} h_{\\|} \cos \left(\delta_{\perp}-\delta_{\\|}\right)$		
12	$P_{2}^{0} Y_{1}^{0}$	$\frac{3}{\sqrt{15}} h_{\perp} h_{\\|} \cos \left(\delta_{\perp}-\delta_{\\|}\right)$		
13	$P_{2}^{1} \sqrt{2} \operatorname{Re}\left(Y_{1}^{1}\right)$	$\frac{3}{\sqrt{5} h_{\perp} h_{0} \cos \delta_{\perp}}$		
14	$P_{2}^{1} \sqrt{2} \operatorname{Im}\left(Y_{1}^{1}\right)$	$-\frac{3}{\sqrt{5}} h_{\\|} h_{0} \sin \delta_{\\|}$		

