

technische universität dortmund

Direct CPV in charm hadrons at LHCb

Serena Maccolini

on behalf of the LHCb Collaboration

International Conference in HEP - July 7, 2022 **Bologna - Emilia Romagna, Italy**

serena.maccolini@cern.ch

TU Dortmund and Emmy Noether program

Why charm is charming?

- CP violation (CPV) in charm is suppressed (asymmetries expected ~0.1% or below)
 - Sensitive to possible contributions of physics beyond the SM
 - Up-type quark: <u>complementary</u> to studies in *K* and *B* systems

- $\sigma(pp \rightarrow c\overline{c} X)_{\sqrt{s} = 13 \text{ TeV}} \cong 2.4 \text{ mb}$
- LHCb is the main player in this quest
- [JHEP 03 (2016) 159]
- CPV in charm has been searched for since decades, in 2019 the LHCb experiment finally observed in neutral meson decays!

 Most promising channels are Cabibbo-suppressed (CS) decays because CPV may arise from the *interference* between the tree and the penguin amplitude

Time-dependent CP violation

In D⁰ mesons, the time-integrated CP asymmetry between the decay rates

$$A_{CP}(f) = \frac{\int \epsilon(t) \Gamma(D^0 \to f) dt - \int \epsilon(t) \Gamma(\overline{D}^0 \to \overline{f}) dt}{\int \epsilon(t) \Gamma(D^0 \to f) dt + \int \epsilon(t) \Gamma(\overline{D}^0 \to \overline{f}) dt}$$

doesn't correspond to a_f^d but is affected by $D^0 - \overline{D}^0$ mixing:

$$A_{CP}(f) \approx a_f^d + \frac{\langle t \rangle_f}{\tau_{D^0}} \Delta Y \qquad \Delta Y_f \approx -x_{12} \sin \phi_f^M + y_{12} \cos \phi_f^M a_f^d$$
[Phys. Rev. D 103, 053008]

where ΔY is related to the mixing parameters and $\langle t \rangle_f$ is the average (acceptance dependent) decay time of the D^0 mesons in the experimental sample. This corresponds to a correction of few times **10**-4.

[LHCB-PAPER-2022-024] in preparation

Measurement of direct *CP* asymmetries in $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$ decays

<u>Presented</u> for the first time!

Motivation

• CP Violation in Charm has been observed in the difference

$$\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^-K^+) - A_{CP}(D^0 \rightarrow \pi^-\pi^+)$$

= (-15.4 ± 2.9)x10⁻⁴

The measurement of $A_{CP}(D^0 \rightarrow K^-K^+)$ and $A_{CP}(D^0 \rightarrow \pi^-\pi^+)$ separately is necessary to understand the nature of CPV

- The <u>strategy</u> consists in measuring $A_{CP}(D^{O} \rightarrow K^{-}K^{+})$ and then retrieve a_{KK}^{d} and $a_{\pi\pi}^{d}$ from the combination with ΔA_{CP}
- Last measurement of $A_{CP}(D^0 \rightarrow K^-K^+)$ from LHCb using Run-1 data:

$$A_{CP}(D^0 \to K^+K^+) = [14 \pm 15 \text{ (stat)} \pm 10 \text{ (syst)}] \times 10^{-4}$$

[Phys. Lett. B 767 177-187]

Direct CPV measurements PV • D^{o} or \overline{D}^{o} tagging: $D^{*+-} \rightarrow D^{o} \pi^{+-}$ soft π^+ soft **prompt** (coming from primary vertex) • The *raw* asymmetry (A) in $D^{o} \rightarrow K^{-}K^{+}$ decays $A(D \to f) = \frac{N(D \to f) - N(D \to f)}{N(D \to f) + N(\bar{D} \to \bar{f})}$ includes both physics and detector effects: A_{CP}+(A_P)+(**NUISANCE ASYMMETRIES: Production** asymmetry **Detection** asymmetry **CPV** of **D***+ Of π^+ soft parameter $A_P(D) = \frac{\sigma(D) - \sigma(D)}{\sigma(D) + \sigma(\bar{D})} \quad A_D(f) = \frac{\epsilon(f) - \epsilon(f)}{\epsilon(f) + \epsilon(\bar{f})}$

Serena Maccolini

Direct CPV in charm

7 July 2022

$A(D \to f) = \frac{N(D \to f) - N(\bar{D} \to \bar{f})}{N(D \to f) + N(\bar{D} \to \bar{f})}$

Strategy

- Prompt $D^{\circ} \rightarrow K^{-}K^{+}$ collected during **Run-2**.
- Two methods to *cancel* **NUISANCE** asymmetries:
 - D+ decays, same used in Run-1 analysis (CD+)
 - **D**_s+ decays, new! (**C**_{Ds+})

particles with same color ("twin") must have identical kinematic distributions!

[backup]

 Correct raw asymmetry A using samples of Cabibbo-favoured D⁰/D_(s)+ decays (where CPV can be neglected):

$$\begin{aligned} \mathbf{C}_{D+}: \quad A_{CP}(D^0 \to K^- K^+) &= +A(D^{*+} \to (D^0 \to K^- K^+) \, \pi^+_{soft}) - A(D^{*+} \to (D^0 \to K^- \pi^+) \, \pi^+_{soft}) \\ &+ A(D^+ \to K^- \pi^+ \, \pi^+) - \left[A(D^+ \to \overline{K}^0 \, \pi^+) - A(\overline{K}^0)\right] \end{aligned}$$

$$\begin{aligned} \mathbf{C}_{DS+}: \quad A_{CP}(D^0 \to K^- K^+) &= +A(D^{*+} \to (D^0 \to K^- K^+) \, \pi^+_{soft}) - A(D^{*+} \to (D^0 \to K^- \pi^+) \, \pi^+_{soft}) \\ &+ A(D^+_s \to \phi \pi^+) - \left[A(D^+_s \to \overline{K}^0 \, K^+) - A(\overline{K}^0)\right] \end{aligned}$$

where $A(\overline{K}^0)$ includes the detection asymmetry of *neutral kaons*, mixing and *CP*-violating effects.

• For each *kinematically weighted* sample, the raw asymmetry A is determined with a *simultaneous* fit to the *positive* and *negative* final state invariant-mass distributions

[backup]

Weighting procedure

Signal yields

					$\times 10^3$
					$ \begin{array}{c} \overset{\mathbf{N}}{\underset{\mathbf{D}}{\overset{\mathbf{D}}}{\overset{\mathbf{D}}}{\overset{\mathbf{D}}}{\overset{\mathbf{D}}{\overset{\mathbf{D}}{\overset{\mathbf{D}}}{$
Decay mode	Signal yield [10 ⁶]		Reduction factor		- Fit Comb. bkg Fit Comb Fit Comb.
	\mathcal{C}_{D^+}	$\mathcal{C}_{D_s^+}$	\mathcal{C}_{D^+}	$\mathcal{C}_{D_s^+}$	
$D^0 \to K^- K^+$	45	40	0.75	0.75	$ = \underbrace{\underbrace{B}}_{0} \underbrace{\underbrace{0}}_{2005} \underbrace{\underbrace{1}}_{2005} \underbrace{2010}_{2015} \underbrace{2015}_{m(D^{0}\pi^{+}) \text{ [MeV/c^{2}]}} \underbrace{0}_{2005} \underbrace{\underbrace{1}}_{2005} \underbrace{2010}_{2015} \underbrace{2015}_{m(D^{0}\pi^{+}) \text{ [MeV/c^{2}]}} \underbrace{0}_{2005} \underbrace{0}_{2015} $
$D^0 \to K^- \pi^+$	60	55	0.35	0.75	≈ 5000 $=$ $\times 10^3$ $=$ $\times 1$
$D^+ \to K^- \pi^+ \pi^+$	192	_	0.25	_	$ \begin{array}{c} \begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
$D_s^+ \to \phi \pi^+$	-	83		0.55	$\begin{array}{c} \mathbf{r} \\ $
$D^+ \to \overline{K}{}^0 \pi^+$	8	_	0.25		
$D_s^+ \to \overline{K}{}^0 K^+$	—	6	_	0.40	LHCb preliminary
					$ \begin{array}{c} 0 \\ 1800 \\ m(K^{-}\pi^{+}\pi^{+}) \\ m(K^{0}\pi^{+}\pi^{+}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ 1850 \\ m(K^{0}\pi^{+}) \\ m(K^{0}_{S}\pi^{+}) \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} 0 \\ 1800 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} 0 \\ 0 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} 0 \\ 0 \\ m(K^{0}_{S}\pi^{+}) \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\
• Statistical precision on A_{CP} of $\sum_{k=1}^{1400}$ LHCb $D_{k}^{+} \rightarrow \phi \pi^{+}$ $\sum_{k=1}^{1400}$ LHCb $D_{k}^{+} \rightarrow \phi \pi^{+}$					
					$\begin{array}{c} 1000 \\ 1000 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\$
8.8X10-4 and 6./X10-4 for C_{D+}					0 800
and C- roonaativaly					$\frac{3}{40} \begin{bmatrix} 600 \\ 400 \end{bmatrix}$ LHCb preliminary $\frac{3}{40} \begin{bmatrix} 60 \\ 40 \end{bmatrix}$ LHCb preliminary
and $ODs+$, 1650	ective	чy		
					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Serena Maccolini

Direct CPV in charm

7 July 2022

Final results for A_{CP}(K⁻K⁺) and combination

• Final results for $A_{CP}(K^{-}K^{+})$ are:

C_{D⁺}: $\mathcal{A}_{CP}(K^{-}K^{+}) = [13.6 \pm 8.8 \,(\text{stat}) \pm 1.6 \,(\text{syst})] \times 10^{-4},$ C_{D⁺}: $\mathcal{A}_{CP}(K^{-}K^{+}) = [2.8 \pm 6.7 \,(\text{stat}) \pm 2.0 \,(\text{syst})] \times 10^{-4}.$

with an overall correlation coefficient $\rho = 0.06$ and are found to be compatible within 1 standard deviation.

• The combination yields

 $\mathcal{A}_{CP}(K^{-}K^{+}) = [6.8 \pm 5.4 \,(\text{stat}) \pm 1.6 \,(\text{syst})] \times 10^{-4},$

 $\Delta Y = [-1.04 \pm 1.17] \times 10^{-4}$
[Phys. Rev. D 104, 072010]

• **Direct CP violation parameters** a_{KK}^d and $a_{\pi\pi}^d$ in $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$ are calculated from the **combination** of $A_{CP}(K^-K^+)$ with ΔA_{CP} and accounting for possible *timedependent CP* violation considering

$$A_{CP}(K^{-}K^{+}) = a_{KK}^{d} + \frac{\langle t \rangle_{KK}}{\tau_{D^{0}}} \Delta Y$$
$$\Delta A_{CP} = a_{KK}^{d} - a_{\pi\pi}^{d} + \frac{\langle t \rangle_{KK} - \langle t \rangle_{\pi\pi}}{\tau_{D^{0}}} \Delta Y$$

• All Run-1 and Run-2 measurements are embedded in a **global** χ^2 , taking into account *correlations*.

First evidence for direct CP violation

$$a_{K^-K^+}^d = (7.7 \pm 5.7) \times 10^{-4} = (23.2 \pm 6.1) \times 10^{-4}$$

$$a_{\pi^-\pi^+}^d = (23.2 \pm 6.1) \times 10^{-4} = (23.2 \pm 6.1) \times 10^{-4}$$

$$a_{\pi^-\pi^+}^d = (23.2 \pm 6.1) \times 10^{-4} =$$

• They report the <u>first evidence</u> for **direct CP violation** in $D^0 \rightarrow \pi^-\pi^+$ decays at the level of **3.8** σ .

• *U-spin* breaking in CP asymmetries:
$$a_{KK}^d + a_{\pi\pi}^d \neq 0$$
 at the level of 2.7 σ .

Conclusions

- A measurement of $A_{CP}(D^{O} \rightarrow K^{-}K^{+})$, using *prompt* decays collected during *Run-2*, has been presented
- A precision of 6x10-4 has been obtained combining D+ and D_s+ decays to cancel nuisance asymmetries.
- The measurement is the most accurate in the **world** and is still statistically dominated.

• Direct *CP* violation asymmetries a_{KK}^d and $a_{\pi\pi}^d$ are calculated from the combination of A_{CP} with previous LHCb measurements, revealing the **first evidence** for direct *CP* violation in $D^0 \rightarrow \pi^-\pi^+$ decays

Thanks!

Serena Maccolini

*D*⁰→*K*-*K*+ processes (as an example)

- For simplicity, the $D^0 \rightarrow K^-\pi^+$ sample is **split in 2** subsamples to be used in the D^+ and D_{s^+} methods.
- D^{*}+/D_(s)+ meson has to be *prompt* to avoid production asymmetries from B meson decays → cut on the impact parameter (IP)
- *Kinematic regions* with very large values of *raw asymmetries* need to be **removed**
- Tight particle-ID cuts to reduce **mis-ID** backgrounds
- The "harmonization" rule: every kinematic, PID and trigger requirement applied to a
 particle must be applied to the other "twin" particle. This simplifies the weighting
 procedure and avoids any possible final-state induced asymmetries.

The "harmonization" rule

 In the formula, "twin" particles must induce the exact amount of nuisance asymmetry

$$\mathbf{C}_{D+}: A_{CP}(D^{0} \to K^{-}K^{+}) = +A(D^{*+} \to (D^{0} \to K^{-}K^{+})\pi_{soft}^{+}) - A(D^{*+} \to (D^{0} \to K^{-}\pi^{+})\pi_{soft}^{+}) + A(D^{+} \to K^{-}\pi^{+}\pi^{+}) - \left[A(D^{+} \to \overline{K}^{0}\pi^{+}) - A(\overline{K}^{0})\right]$$

$$\begin{aligned} \mathbf{C}_{DS+}: \ A_{CP}(D^0 \to K^- K^+) &= +A(D^{*+} \to (D^0 \to K^- K^+) \, \pi^+_{soft}) - A(D^{*+} \to (D^0 \to K^- \pi^+) \, \pi^+_{soft}) \\ &+ A(D^+_s \to \phi \pi^+) - \left[A(D^+_s \to \overline{K}^0 \, K^+) - A(\overline{K}^0)\right] \end{aligned}$$

- Every kinematic, PID and trigger requirement applied to a particle must be applied to the other "twin" particle
- This simplifies the *weighting* procedure and avoids any possible final-state induced asymmetries

Weighting procedure

- For each method, an *iterative* weighting approach has been used on the *four* decay modes.
- This is done until a satisfactory agreement of all kinematic distributions is obtained.

Serena Maccolini

Fit results

Neutral kaon asymmetry

- Different interaction cross-sections of K^0 and \overline{K}^0 mesons with matter, including effects due to mixing and CPV induce and $0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.4 \ 0.4$ asymmetry.
- Evaluated for each sample with a K_S in the final state using LHCb material map from simulation (Si,Al,vacuum), neutralkaon cross-sections, forward scattering phase, mixing and CPV.

Nu

HEP

07 (2014) 041]

Systematic

Strategy: introduce an additional linear term in the decay
 time to approximate the first-order deviations from the mousi

$$A_{\rm raw}(\tau) = A_{\rm nuisance} + A_{\rm det}^{\rm pred}(\tau) + \delta A$$
 $\delta A = c$

Capture, to first order, mis-modelling, including possible effects of additional *K*s-lifetime-dependent *CP* violation. (control sample)

Its RMS is assigned as systematic uncertainty.

Candidate 0.025 0.015

0.0

U

 $t/\tau_{\rm S}$

- Control sample

LHCb preliminary-

1.5

 $\cdot \tau$

Validation with MC and consistency

The weighting procedure is ve assumptions embedded in the asymmetries for A_{CP} using hug samples.

 Several consistency checks to verify that A_{CP}(K-K+) does not depend on running conditions, kinematics, topology, PID and high-level trigger selection.

