Branching fractions and CP asymmetries in *B* decays through $b \rightarrow c$ processes at Belle

KEKB + Belle Detector

- Asymmetric e⁺e⁻ collider, B factory, Tsukuba, Japan (1999-2010)
- 8 GeV electrons, 3.5 GeV positrons, CoM energy 10.58 GeV Y(4S) resonance
- Even split between B^+ and B^0 (1.058 ± 0.024, charged:neutral)
- Energy asymmetry leads to separation in *B* decay vertex
 - Allows for time dependent analyses
- Peak luminosity 2.1x10³⁴cm⁻²s⁻¹, 711fb⁻¹ of 772x10⁶ *B* pairs

ICHEP2022

Non-Leptonic $b \rightarrow c$ decays

Two kinds of non-leptonic B^0 decays mediated by $b \rightarrow c$ transitions

Color-allowed

QCD factorization applicable

QCD factorizable **not** applicable

- Decays with four quark flavors are the simplest and cleanest non-leptonic $B_{(s)}$
 - No penguin or annihilation processes can contribute
- Focus on $B_s^0 \to D_s^{(*)}\pi^+$ and $B^0 \to D^{(*)}K^+$ to test QCD factorization

QCD factorization: systematic method to compute amplitudes in non-leptonic *B* decays in the heavy quark limit (leading power in $\Lambda_{\text{QCD}}/\text{m}_{\text{b}}$) $\mathcal{A}(\bar{B}^0 \to D^+K^-) \propto f_K F_0^{B \to D}(M_K^2) a_1(D^+K^-) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{m_b}\right)$

> Improve theoretical predictions for $B_s^0 \to D_s^* \pi^+$ and $B^0 \to D^* K^+$ branching fractions

(К. Ѕмітн)

source	PDG(x10 ⁻³)	QCDF prediction	
$\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)$	3.00 ± 0.23	4.42 ± 0.21	$\rightarrow 4\sigma$
$\mathcal{B}(\bar{B}^0 \to D^+ K^-)$	0.186 ± 0.020	0.326 ± 0.015	$\rightarrow 5\sigma$
$\mathcal{B}(\bar{B}^0_s \to D^{*+}_s \pi^-)$	2.0 ± 0.5	$4.3^{+0.9}_{-0.8}$	$\rightarrow 2\sigma$
$\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$	0.212 ± 0.015	$0.327\substack{+0.039\\-0.034}$	$\rightarrow 3\sigma$

- Large nonfactorizable contributions of *O*(15 20%) in the amplitude
 - Excluded by our estimate at 4.4σ level
- Experimental issues
 - Would imply problems in several (consistent) measurements (CLEO, BaBar, LHCb, Belle)
- Shift in the inputs (e.g. V_{ud} , V_{us} , V_{cb})
 - Probably violates unitarity of CKM matrix
- BSM physics only explanation left
- A combination of the above

(K. SMITH)

$B^0 \rightarrow D^{*-}h^+(h=K/\pi)$: Motivation

- $b \rightarrow cud$ and $b \rightarrow cus$ quark transition amplitudes (a₁) are calculated with NNLO QCD
- High precision QCD and SU(3) symmetry tests
- Prior measurements of $R_{K/\pi}$ agree with theory but have large statistical uncertainties
- Decay widths of $B \rightarrow D^*h$ can be estimated from their semileptonic counterpart

$$\begin{split} \Gamma(\bar{B}^0 \to D^{*+}h^-) = & 6\pi^2 \tau_B |V_{uq}|^2 f_h^2 X_h |a_1(q^2)|^2 \times \\ & d\Gamma(\bar{B}^0 \to D^{*+}\ell^-\bar{\nu})/dq^2|_{q^2 = m_h^2} \end{split}$$

• Performing this study within a single experiment would cancel many systematic uncertainties

Variable	Result	Collaboration	Year
$\mathcal{R}_{K/\pi}$	$(7.76 \pm 0.34 \pm 0.26) \times 10^{-2}$	LHCb	2013
$\mathcal{B}[B^0 \to D^{*-}\pi^+]$	$(2.79 \pm 0.08 \pm 0.17) \times 10^{-3}$	BaBar	2007
$\mathcal{B}[B^0 \to D^{*-}K^+]$	$(2.13 \pm 0.12 \pm 0.10) \times 10^{-4}$	BaBar	2006

Previous results

7 JULY, 2022

$B^0 \rightarrow D^{*-}h^+(h=K/\pi)$: Analysis Strategy

- Full Belle dataset (772M B pairs)
- Only $D^{*-} \rightarrow D^0 \pi^+$ is considered (channels with π^0 has large systematics)
- $D^0 \to K^-\pi^+$ and $D^0 \to K^-2\pi^+\pi^-$

Selection criteria:

- $5.27 < M_{bc}(\text{GeV/c}^2) < 5.29$
- |∆E (GeV)| < 0.13 (pion enhanced)
- |∆*E* (GeV)| < 0.15 (kaon enhanced)

 $\Delta E = E_B - E_{\text{beam}}$ $E_B = \text{energy of B in CM frame}$ $E_{\text{beam}} = \text{half of beam energy}$ $M_{bc} = \sqrt{E_{\text{beam}}^2 - p_B^2}$ $p_B = \text{momentum of B in CM frame}$

• Simultaneous UML fits to pion and kaon components in ΔE

 π signal PDF = 2xGaussian + Crystal Ball K signal PDF = Gaussian + Crystal Ball

(К. Ѕмітн)

$B^0 \rightarrow D^{*-}h^+(h=K/\pi)$: Results

(K. Smith)

ICHEP2022

7 JULY, 2022

$B^0 \rightarrow D^- h^+ (h = K/\pi)$: Motivation

- Both modes are important \rightarrow signal or control channels for measurements related to ϕ_3 angle
- $B^0 \rightarrow D^- K^+$ provide great opportunities to test hadronic *B*-meson decay theory \rightarrow clean and dominant hadronic decay channel
- Improved measurements of the color-favored hadronic two-body decay of the B meson → better understanding of the QCD effects
- Branching fraction for the Cabibbo suppressed $B^0 \to D^- K^+$ is related to $B^0 \to D^- \pi^+$ by

Cabibbo angle

$$R^{D} \equiv \frac{\mathscr{B}(\bar{B}^{0} \to D^{+}K^{-})}{\mathscr{B}(\bar{B}^{0} \to D^{+}\pi^{-})} \simeq \tan^{2}\theta_{C} \left(\frac{f_{K}}{f_{\pi}}\right)^{2} = 0.077 \pm 0.002$$
meson decay constants \Box
J. High Energ. Phys. 2016, 112 (2016)

- Ratio of branching fraction measured systematic cancel out → important for the decays which are systematic limited
- Both decays have not been measured with full Belle data set

$B^0 \rightarrow D^- h^+ (h = K/\pi)$: Analysis Strategy

- Significant background from the $B^0 \rightarrow D^-\pi^+$ decays in $B^0 \rightarrow D^-K^+$ due to misidentification of pions as kaons
- A simultaneous fit is performed to samples enhanced in prompt tracks that are either pions [ℒ(K/π) < 0.6] or kaons [ℒ(K/π) > 0.6]
- Selection criteria are similar to B⁰ → D*h⁺ except with a D mass window of ~13MeV/c²
- Cross-feed from both decay modes is also determined from the simultaneous fit
- Due to the low yield of $B^0 \to D^- K^+$ cross-feed to the pion-enhanced sample, the kaon identification efficiency $\epsilon_{\rm K}$ is fixed
- Un-binned maximum likelihood fit is performed to extract the signal yield by fitting the ΔE distribution simultaneously in $B^0 \rightarrow D^-\pi^+$ and $B^0 \rightarrow D^-K^+$ samples

$B^0 \rightarrow D^- h^+ (h = K/\pi)$: Results

$$R^{D} \equiv \frac{\mathscr{B}(\bar{B}^{0} \to D^{+}K^{-})}{\mathscr{B}(\bar{B}^{0} \to D^{+}\pi^{-})} = [8.19 \pm 0.20(\text{stat}) \pm 0.23(\text{syst})] \times 10^{-2}$$
$$\mathscr{B}[B^{0} \to D^{-}(\to K^{+}\pi^{-}\pi^{-})\pi^{+}] = [2.48 \pm 0.01_{\text{stat}} \pm 0.09_{\text{syst}} \pm 0.04_{\mathscr{B}(D^{-} \to K^{+}\pi^{-}\pi^{-})}] \times 10^{-3}$$

 $\mathscr{B}[B^0 \to D^-(\to K^+\pi^-\pi^-)K^+] = [2.03 \pm 0.05_{\text{stat}} \pm 0.07_{\text{syst}} \pm 0.03_{\mathscr{B}(D^- \to K^+\pi^-\pi^-)}] \times 10^{-4}$

Source	R^D	$\mathcal{B}(\overline{B}^0 \to D^+ \pi^-)$	$\mathcal{B}(\overline{B}^0 \to D^+ K^-)$
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$	-	1.71%	1.71%
Tracking	-	1.40%	1.40%
$N_{B\overline{B}}$	-	1.37%	1.37%
f^{00}/f^{+-}	_	1.92%	1.92%
$D^+ \to K^- \pi^+ \pi^+ \text{ model}$	_	0.69%	0.69%
PDF parametrization	2.71%	1.63%	1.79%
PID efficiency of K/π	0.88%	0.68%	0.73%
D^+ mass selection window	0.05%	0.56%	0.64%
J/ψ veto selection	0.12%	0.004%	0.15%
Peaking background yield	0.07%	0.04%	0.00%
MC statistics	< 0.01	0.04%	0.04%
Fit bias	-	0.58%	0.61%
Total	2.85%	3.43%	3.54%

Main source of uncancelled uncertainty is in K/ π identification efficiency Results consistent with previous measurements Remains in tension with theory

Previous results

Variable	Result	Collaboration	Year
\mathcal{R}^{D}	(8.22 ± 0.11 ± 0.25) x 10 ⁻²	LHCb	2013
$\mathcal{B}[B^0 \to D^- \pi^-)$	⁺] (2.55 ± 0.05 ± 0.16) x 10 ⁻³	BaBar	2007
$\mathcal{B}[B^0 \to D^- K^-]$	⁺] (1.89 ± 0.19 ± 0.10) x 10 ⁻⁴	LHCb	2011

(К. Ѕмітн)

7 JULY, 2022

$B^+ \rightarrow D^+ (K_s^0/\eta), D_s^{*+} (K_s^0/\eta)$: Physics Motivation

- Study of rare *B* decays probes CKM matrix unitarity conditions in search of NP
- Studies of $b \rightarrow u$ quark level transition improve understanding of internal dynamics of *B* mesons
- Charged *B* decays are expected to be dominated by weak-annihilation diagrams
- These decay modes are poorly measured

Decay Mode	BF(x10 ⁻⁴)	Collaboration	Reference
$B^+ \to D_s^{(*)+} K_S^0$	< 9	CLEO	Alexander, Phys. Lett. B319 (1993)
$B^+ \to D_s^{(*)+} \eta$	< 6	CLEO	Alexander, Phys. Lett. B319 (1993)
$B^+ \to D^+ K_S^0$	< 0.05	BaBar	Aubert, Phys. Rev. D72 (2005) 011102
$B^+ \to D^+ \eta$	-	-	-

ICHEP2022

First presentation of results

$B^+ \rightarrow D^+ (K_s^0/\eta), D_s^{*+} (K_s^0/\eta)$: ANALYSIS STRATEGY

• 1D UML fit in ΔE to extract yields

Reconstructed D channels:

$$D_s^{*+} \to D_s^+ \gamma$$
$$D_s^+ \to \phi \pi^+, \bar{K}^{*0} K^+, K_S^0 K^+$$
$$D^+ \to K^- \pi^+ \pi^+, K_S^0 \pi^+$$

Selection criteria:

- M_{bc} > 5.20 GeV/c²
- |*∆E* (GeV)| < 0.18
- Vertex fit (KFitter)

Control mode for η modes: $\bar{B}^0 \rightarrow D^0 \eta$

Control mode for K_{S} modes: $\overline{B}^{0} \rightarrow D^{0} K_{S}^{0}$

• Best candidate minimises the following:

$$\chi^2 = \left(\frac{M_{D_s} - m_{D_s}^{PDG}}{\sigma_{D_s}}\right)^2 + \left(\frac{M_{bc} - m_B^{PDG}}{\sigma_{M_{bc}}}\right)^2$$

• Continuum suppression done with a trained FastBDT using 7 distinguishing variables

Signal Pulls $\rightarrow D_{a}^{(*)+}$ $\tilde{\Xi}_{180} \to D^+ K^0_S$ sigma1 = 1.031 ± 0.016 sigma1 = 0.974 ± 0.015 Simultaneous fit to $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi \pi \pi$ for decays involving n $\rightarrow D^{(*)}$ nean1 = 0.496 ± 0.022 mean1 = 0.073 ± 0.023 sigma1 = 0.973 ± 0.015 sigma1 = 1.033 ± 0.016 $\rightarrow \pi^{-}\pi^{+}\pi$ $\rightarrow \pi^{-}\pi^{+}\tau$

(К. Ѕмітн)

ICHEP2022

7 JULY, 2022

pull distribution

$B^+ \rightarrow D^+ (K_s^0/\eta), D_s^{*+} (K_s^0/\eta)$: RESULTS

Decay Mode	Yield @ 90% CL	BF(x10⁻⁵) @ 90% CL
$B^+ \to D_s^{(*)+} K_S^0$	1.8	0.6
$B^+ \to D_s^{(*)+} \eta$	5.5	1.7
$B^+ \to D^+ K_S^0$	8	0.2
$B^+ \to D^+ \eta$	42	1.2

Source	$B^+ \to D_s^{(*)+} K_S^0$	$B^+ \to D_s^{(*)+} \eta$	$B^+ \to D^+ K_S^0$	$B^+ \to D^+ \eta$
π ID	0.8%	1.4%	0.7%	1.2%
K ID	1.3%	2.0%	0.4%	0.6%
Tracking	1.8%	1.2%	1.8%	1.2%
$N_{B\bar{B}}$	1.4%	1.4%	1.4%	1.4%
K_s^0 reconstruction	0.5%	0.4%	0.5%	0.3%
η detection	-	2.1%	-	2.1%
Secondary BF	2.1%	2.2%	1.5%	1.6%
ΔE fit	-	-	-	9.7%, 12.1%
Total sys.	3.5%	4.3%	2.9%	10.3%, 12.6%

BF upper limit at 90% CL are 20x tighter than previous result

(К. Ѕмітн)

TIME-DEPENDENT CPV IN $B^0 ightarrow \eta_{ m c} K_{ m s}$: Physics Motivation

First presentation of results

WA: $\sin 2\phi_1 = 0.699 \pm 0.017$

 $\frac{\text{Previous measurements for}}{B^0 \rightarrow \eta_c K_s}$

Belle (151M *B* pairs):

 $\mathcal{S}_{\eta_c K_S^0} = 1.126^{+0.27}_{-0.39} \pm 0.06_{\rm syst}$

BaBar (465M B pairs) [2]:

 $S_{\eta_c K_S^0} = 0.925^{+0.160}_{-0.160} \pm 0.057_{\text{syst}}$ $\mathcal{A}_{\eta_c K_S^0} = -0.080^{+0.124}_{-0.124} \pm 0.029_{\text{syst}}$

Belle (772M B pairs): ???

- Inconsistency of S among vector and pseudoscalar (or axial vector) charmonia can be sign of NP [1]
 [1] D. Atwo
- No Belle measurement at full integrated luminosity

[1] D. Atwood and G. Hiller (2003), hep-ph/0307251
[2] B. Aubert *et al.* [BaBar], Phys. Rev. D79, 072009 (2009)

$B^0 \rightarrow \eta_c K_s$: Analysis Strategy 2

Multi-dimensional extended unbinned maximum likelihood fit in r-bin (tagging quality

category index)

$$\Delta E \times M \equiv M(K_S^0 K^+ \pi^-) \times \Delta t \times q \times$$

B_{tag} flavor (±1)

- *M*_{bc} for best B-candidate selection
- Background parameters estimated from data $(M_{bc} \text{ or } M \text{ sideband})$

Peaking background (~20% of signal)

- $\bullet \quad b \to c \text{ and } b \to s \text{ induced decays}$
- Includes non-resonant background → (significant) interference effects estimated in a dedicated study (ignored in data model → systematics)

Simultaneous fit for CPV parameters, signal and background yields and peaking bkg. fraction

Control and calibration mode:

$$B^{\pm} \to \eta_c K^{\pm}$$

Total Fit

Continuum Bkg

Peaking Bkg

Signal

(К. Ѕмітн)

7 JULY, 2022

Total Fit

Continuum Bkg

Peaking Bkg

Signa

 $B^0 \rightarrow \eta_c K_s$: RESULTS

(К. Sмітн)

ICHEP2022

6 ∆t [ps]

CONCLUSION

Most precise measurements $R_{\kappa/\pi}$ is 2.7 σ from theory

$$\begin{split} B^0 &\to D^{*-}h^+: \mathcal{B}(B^0 \to D^{*-}\pi^+) = (2.623 \pm 0.016 \pm 0.086) \times 10^{-3} & \text{J. Krohn, D. Ferlewicz et al.} \\ \mathcal{B}(B^0 \to D^{*-}K^+) = (2.221 \pm 0.063 \pm 0.077) \times 10^{-4} & \text{(Belle) arxiv 2207.00134} \\ R_{K/\pi} = (8.41 \pm 0.24 \pm 0.13) \times 10^{-2} \end{split}$$

Most precise measurements Important test of Factorization Needed for ϕ_3

Most precise measurements of rare BF by 20x First measurement of $B^+ \rightarrow D^+\eta$

$$\begin{split} B^0 &\to D^- h^+: \ \mathcal{B}(B^0 \to D^- \pi^+) = (2.48 \pm 0.01 \pm 0.09 \pm 0.04) \times 10^{-3} \\ \mathcal{B}(B^0 \to D^- K^+) = (2.03 \pm 0.05 \pm 0.07 \pm 0.03) \times 10^{-4} \\ R^D &= (8.19 \pm 0.20 \pm 0.23 \pm 0.03) \times 10^{-2} \end{split}$$
 E. Waheed et al. (Belle) PRD 105, 012003 (2022) R^D = (8.19 \pm 0.20 \pm 0.23 \pm 0.03) \times 10^{-2} \end{split}

$$\begin{split} B^+ &\to D_s^{*+}(K_S^0/\eta) : \mathcal{B}(B^+ \to D_s^{*+}K_S^0) < 0.6 \times 10^{-5} \\ & \mathcal{B}(B^+ \to D_s^{*+}\eta) < 1.7 \times 10^{-5} \\ B^+ &\to D^+(K_S^0/\eta) : \ \mathcal{B}(B^+ \to D^+K_S^0) < 0.2 \times 10^{-5} \\ & \mathcal{B}(B^+ \to D^+\eta) < 1.2 \times 10^{-5} \end{split}$$

First presentation of results

Preliminary Planned journal submission

First measurement of $\sin 2\phi_1$ with full Belle dataset

$$B^{0} \to \eta_{c} K_{S}^{0} : \mathcal{S} = 0.59 \pm 0.17 \pm 0.07$$
$$\mathcal{A} = 0.16 \pm 0.12 \pm 0.06$$
$$\mathcal{B} = (9.8 \pm 0.6 \pm 0.4 \pm 2.3) \times 10^{-6}$$

First presentation of results

Preliminary Planned journal submission

THANK YOU!

(К. Ѕмітн)

ICHEP2022

7 JULY, 2022

BACKUP

(К. Ѕмітн)

ICHEP2022

7 JULY, 2022

 ϕ_3 is the phase arising from the quark transitions $b \to u$ and $b \to c$ with the theoretically cleanest being $B \to DK$

- D decaying to common final state \rightarrow interference between both paths
- The level of interference and its exact interpretation depend on the physics of *B* and *D* decays
- Direct observation of CPV is limited by small statistics from small branching fractions

Suppressed Favored

$$B^{-} \xrightarrow{W^{-}} \underbrace{a}^{u} \overline{c} \overline{D^{0}} \xrightarrow{W^{-}} \underbrace{a}^{v} \overline{a} K^{-} \xrightarrow{a} B^{-} \underbrace{b}^{v} \xrightarrow{u} \underbrace{c}^{v} D^{0}$$

$$\frac{\mathcal{A}^{\mathrm{suppr}}(B^- \to \bar{D}^0 K^-)}{\mathcal{A}^{\mathrm{favor}}(B^- \to D^0 K^-)} = r_B e^{i(\delta_B + \phi_3)}$$

QCD factorization: systematic method to compute amplitudes in non-leptonic *B* decays in the heavy quark limit (leading power in $\Lambda_{\rm QCD}/m_{\rm b}$)

$$\mathcal{A}(\bar{B}^0 \to D^+ K^-) \propto f_K F_0^{B \to D}(M_K^2) a_1(D^+ K^-) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{m_b}\right)$$

Improve theoretical predictions for $B_s^0 \to D_s^* \pi^+$ and $B^0 \to D^* K^+$ branching fractions

- Wilson coefficients a₁ computed at NNLO [Huber/Krank/Li 2016]
- Update $B \to D^*$ and $B_s \to D^*_s$ form factors [Bordone/NG/Jung/van Dyk 2019]
- Estimate Λ_{QCD}/m_b corrections for the first time [Bordone/NG/Huber/Jung/van Dyk 2020]