

Recent Belle II results on the CKM parameters $|V_{cb}|$ and $|V_{ub}|$

July 8, 2022 ICHEP Taichiro Koga (KEK) on behalf of the Belle II collaboration

Determination of CKM parameters

-Essential references for the standard model quark dynamics

 $-|V_{cb}|$ and $|V_{ub}|$ are measured precisely with semileptonic B decays

HFLAV, <u>arXiv:2206.07501</u> discrepancy between inclusive and exclusive

Measurement of $|V_{cb}|$ and $|V_{ub}|$ at Belle II

- -Belle II at SuperKEKB: on-threshold $B\overline{B}$ production from $e^+e^- \rightarrow Y(4S) \rightarrow B_{sig} \overline{B}_{tag}$, reconstructed with hermetic detector
- -Today: four results based on exclusive signal reconstruction with and without reconstructing partner B_{tag}

V _{xb}	Signal B (B _{sig}) decay	Other B (B _{tag}) decay	Latest result	
$ V_{cb} $	B_{sig} →Dℓν (ℓ=e,μ)	untagged	ICHEP 2022	
$ V_{cb} $	B ⁰ _{sig} →D [*] ℓν (ℓ=e,μ)	hadronically tagged	Moriond 2022	190fb ⁻¹
$ V_{ub} $	B ⁰ _{sig} →πℓν (ℓ=e,μ)	untagged	ICHEP 2022	
$ V_{ub} $	B _{sig} →πeν	hadronically tagged	Moriond 2022	

Untagged $B \rightarrow D\ell v$: selection

- -Challenge: large background from continuum and B decays
 - $-B^0 \rightarrow D^- \ell^+ \nu_{\ell}, B^+ \rightarrow \overline{D}^0 \ell^+ \nu_{\ell}$ and cc. ($\ell = e, \mu$) with $D^0 \rightarrow K^- \pi^+$ or $(D^- \rightarrow K^+ \pi^- \pi^-)$
 - -K, π , ℓ : reconstructed by tracking and particle ID detectors
 - -D: reconstruct mass with K and π
 - -D* veto: reject B→D*ℓv candidates
 - -Event shape and energy cuts for background rejection

Untagged $B \rightarrow D\ell v$: result

-Differential decay width is fitted to extract $|V_{cb}|$ and form factors

-<u>BGL</u> parametrization (N=3) (Phys. Rev. D 56, 6895(1997)) with lattice QCD by FNAL/MILC (Phys. Rev. D 92, 034506 (2015)), <u>HPQCD</u> (Erratum: Phys.Rev.D 93, 119906 (2016))

Tagged $B^0 \rightarrow D^* \ell v$: hadronic tag

-Challenge: low reconstruction efficiency of B_{tag}

-Full Event Interpretation algorithm to reconstruct B_{tag} (*Comput Softw Big Sci* **3**, 6 (2019))

-Reconstruct B candidate with all combination of daughters

-Calculate signal probability with multivariate classifier. Input for training: vertex, momentum, PID of daughters

-B_{tag} efficiency is ~0.27%, purity is ~15% -calibrated with B→Xℓv

Tagged B⁰→D^{*}ℓv: signal selection -Challenge: reconstruct low momentum pions from D* -calibrated with B→D^{*}π

 $-B^0 \rightarrow D^* \ell v$ and cc. ($\ell = e, \mu$) are reconstructed for $|V_{cb}|$

-Squared invariant mass of unreconstructed signal decay product (m²_{miss}) is estimated with D*, ℓ, B_{tag} and initial beam energy

Tagged $B^0 \rightarrow D^* \ell v$: result

-Differential decay width is fitted to extract $|V_{cb}|$ and form factors

-CLN parametrization
(Nuclear physics B, 530, 153 (1998))
$$\frac{d\Gamma}{dw} = \frac{\eta_{\rm EW}^2 G_F^2}{48\pi^3} m_{D^*}^3 (m_B - m_{D^*})^2 g(w) F^2(w) |V_{cb}|^2$$

$$\eta_{EW} |V_{cb}| = (38.2 \pm 2.8) \times 10^{-3}$$

stat.+sys.+theo.

-Consistent with the exclusive world average

Untagged $B^0 \rightarrow \pi \ell \nu$: selection

-Challenge: large background from continuum and B decays $-B^0 \rightarrow \pi \ell v \ (\ell = e, \mu)$ and cc. are reconstructed for $|V_{ub}|$ -continuum and B background rejection with multivariate classifier (Boosted decision trees)

-Signal is extracted by fitting M_{bc} and ΔE distributions - M_{bc} : Invariant B candidate mass where energy is replaced by half of collision energy - ΔE : difference between expected and observed B energy

Untagged $B^0 \rightarrow \pi lv$: result

-Differential decay width is fitted to extract |V_{ub}| and form factors -BCL parametrization (Phys. Rev. D 79, 013008 (2009)) with lattice QCD calculation by $\frac{\text{FNAL/MILC}_{\text{(Phys. Rev. D 92, 014024 (2015))}}}{da^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_{\pi}|^3 |f_+(q^2)|^2,$

 dq^2

$$|V_{ub}|_{B^0 \to \pi^- \ell^+ \nu_\ell} = (3.54 \pm 0.12_{\text{stat}} \pm 0.15_{\text{sys}} \pm 0.16_{\text{theo}}) \times 10^{-3}.$$

10

-consistent with the exclusive world average

Tagged $B \rightarrow \pi ev$: selection

 $-B^0 \rightarrow \pi^- e^+ \nu_e, B^+ \rightarrow \pi^0 e^+ \nu_e$ and cc. are reconstructed for $|V_{ub}|$

 $-\mathbf{B}_{\mathsf{tag}}$ is fully reconstructed with Full Event Interpretation algorithm

-Signal is extracted by fitting missing mass squared distribution

Tagged $B \rightarrow \pi ev$: result

-Differential decay width is fitted to extract $|V_{ub}|$ and form factors -<u>BCL</u> parametrization (Phys. Rev. D 79, 013008 (2009)) with lattice QCD calculation by <u>FNAL/MILC</u> (Phys. Rev. D 92, 014024 (2015)), $\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_{\pi}|^3 |f_+(q^2)|^2$.

$|V_{ub}| \times 10^3 = 3.88 \pm 0.45$ (stat.+sys.+theo.)

-Consistent with the world average

BF of $B \rightarrow \rho \ell v$

 $-B \rightarrow \rho \ell v$ is another channel to measure $|V_{ub}|$

-independent samples from $B \rightarrow \pi l v$

-tension observed between measurements of $B^0 \rightarrow \rho^- \ell^+ \nu$ and $B^+ \rightarrow \rho^0 \ell^+ \nu$

-BF is measured with the hadronic tag method -Signal is extracted from missing mass squared and invariant mass of two pions

Summary

- -Improved measurements of $|V_{cb}|$ and $|V_{ub}|$ are essential to increase the constraining power of the Unitarity triangle fit
- -Known initial state kinematics and hermetic detector make Belle II ideal for these studies
- -Today new analyses based on $B \rightarrow D(^*)\ell nu$, $B \rightarrow \pi \ell nu$
- -Results consistent with previous measurements and approaching their precision

14

Backup

Belle II experiment

-Super-B factory

-SuperKEKB + Belle II detector:

energy-asymmetric e⁻(7 GeV) e⁺(4 GeV) collider at Y(4S)

-Achieved peak luminosity: $4.7 \times 10^{34} \text{ cm}^2 \text{s}^{-1}$

-Integrated luminosity: 424 fb⁻¹

Measurement of $|V_{cb}|$ and $|V_{ub}|$ at Belle II

-In this time, Belle II measures $|V_{cb}|$ and $|V_{ub}|$ exclusively $|V_{cb}|: B \rightarrow D(*) |v, |V_{ub}|: B \rightarrow \pi |v|$ (l=e, μ) -189 fb⁻¹ dataset accumulated in 2019-2021

 $\begin{array}{l} -|V_{cb}| \text{ and } |V_{ub}| \text{ are extracted from differential decay width:} \\ \frac{d\Gamma(B \rightarrow \pi l \nu)}{dq^2} \propto |V_{ub}|^2 \times |FF(q^2)|^2 \end{array} \begin{array}{l} \label{eq:rescaled} \end{tabular} FF: \end{tabular} \end{tabular} FF: \end{tabular} FF: \end{tabular} \end{tabular} \\ \end{tabular} q^2: \end{tabular} \end{tabular}$

-q² is reconstructed by daughter and event kinematics

$$\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|} \text{ (Y=DI, \pi I)}$$
with known initial beam state

and clean environment at Belle II

-π/2 P_Y

untagged $B \rightarrow Dlv$: BF estimation and systematic errors

-Branching fraction of $B \rightarrow Dlv$ is estimated from the signal yield:

	$B^- \to D^0 e^- \overline{\nu}_e$	$B^- \to D^0 \mu^- \overline{\nu}_\mu$	$B^0 \to D^- e^+ \nu_e$	$B^0 \to D^- \mu^+ \nu_\mu$				
$\mathcal{B}(D\ell u)[\%]$	$2.21 \pm 0.03 \pm 0.08$	$2.22 \pm 0.03 \pm 0.10$	$1.99 \pm 0.04 \pm 0.08$	$2.03 \pm 0.04 \pm 0.09$				
	Contributions to the systematic uncertainty [%]							
Tracking	0.90	0.90	1.20	1.20				
N_{BB}	1.91	1.91	1.91	1.91				
$\mathcal{B}(D \to K\pi(\pi))$	0.78	0.78	1.71	1.71				
HadronID	0.61	0.60	0.15	0.15				
LeptonID	1.21	3.11	0.91	1.93				
$D\ell\nu$ FF	0.07	0.12	0.10	0.06				
$D^*\ell \nu$ FF	0.14	0.17	0.02	0.02				
$X_c \ell \nu$ BRs	1.86	1.86	0.40	0.32				
False D shape	1.38	1.47	2.97	2.80				
Continuum normalization	0.19	0.19	0.12	0.12				
Total	3.51	4.56	4.23	4.44				

-Systematic error is estimated with detector response, signal and background modeling

$B \rightarrow Dlv: |V_{cb}|$ extraction

-Differential decay width of $B \rightarrow Dlv$:

$$\frac{\Delta\Gamma(B \to D\ell\nu_{\ell})}{\Delta w} = \frac{G_{\rm F}^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} \eta_{\rm EW}^2 \mathcal{G}^2(w) |V_{cb}|^2$$

-binned likelihood with form factor and $|V_{cb}|$ -Boyd-Grinstein-Lebed parametrization (N=3)

$$f_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^{N} a_{i,n} z^n, \quad i = +, 0$$

-m: mass -G_F: Fermi constant - η_{EW} : electroweak correction -g(w) : form factor $w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$

-f₊, f₀ from lattice QCD calculation by <u>FNAL/MILC</u>, <u>HPQCD</u> are used as

constraints

untagged $B \rightarrow \pi lv$: BF estimation and systematic errors

-Estimated branching fraction of $B \rightarrow \pi lv$: stat. sys. $\mathcal{B}_{B^0 \rightarrow \pi^- \ell^+ \nu_{\ell}} = (1.421 \pm 0.056 \pm 0.126) \times 10^{-4}$

-Systematic error is estimated with detector response, signal and background modeling

Systematic error of BR in each q² bin

TABLE II: Systematic uncertainties in % on the yields split by source.

Source	$B^0 \to \pi^- e^+ \nu_e$					$B^0 \to \pi^- \mu^+ \nu_\mu$						
	q1	q2	q3	q4	q5	q6	q1	q2	q3	q4	q5	q6
Detector	1.2	1.0	1.1	1.4	2.3	2.4	2.3	3.2	3.3	1.2	1.9	3.8
MC Stat.	4.0	2.0	2.4	2.8	3.9	5.6	3.9	2.0	2.3	2.7	3.4	4.8
Continuum	13.1	5.5	4.4	7.8	10.5	33.9	53.3	8.8	3.2	4.5	8.0	11.4
$B\to \rho\ell\nu$	9.5	12.5	9.7	6.9	3.4	12.9	8.7	11.6	8.6	6.3	3.3	14.3
$B\to X_u\ell\nu$	3.3	1.9	2.1	2.1	1.8	3.7	3.4	2.3	2.0	2.3	2.1	6.0
$B\to X_c\ell\nu$	2.3	3.0	1.1	0.8	0.5	2.4	2.4	1.5	1.5	0.8	0.5	2.2
Total Sys.	17.2	14.3	11.2	11.1	12.0	37.0	53.4	15.2	10.3	8.7	9.7	20.3
Stat.	10.2	6.01	6.86	8.08	10.3	13.2	10.4	6.0	6.4	7.8	9.7	13.4
Total	20.2	15.5	13.2	13.7	15.9	39.2	54.5	16.4	12.2	11.6	13.7	24.3