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Cell signalling

2

• Cell signalling is the cells ability to detect and react to external stimuli

• Signalling regulates cell metabolism and tissue homeostasis

• The stimulus is transmitted inside the cells through a chain of 

chemical messengers

Ca2+ is a fundamental chemical messenger
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[Ca2+]extr ~ 2-2.5 mM

[Ca2+]intr ~ 10-100 nM

• The intracellular concentration of Ca2+ in cytosol 

[Ca2+]intr is very low compared to extracellular 

concentration [Ca2+]extr (4 - 5 orders of magnitude)

• Stimuli open channels for Ca2+ and allow Ca2+ extracellular 

to flow into the cytosol, raising intracellular Ca2+ 

concentration ([Ca2+]intr gradient)

• Ca2+ ions bind to some proteins in the cell changing 

their activity providing a response to a stimulus

Ca2+ signalling



Guglielmo Vesco Quantifying Calcium concentration in living cells 4

Many significant processes are regulated by gradient Ca2+ concentration

between the intracellular and extracellular environment.

Neurotransmission

Gene transcription Cardiac regulation

ATP production

Ca2+ signalling
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The reconstruction of the Ca2+ signal is made possible using fluorescent labels 

or bioluminescent proteins, offering significant advantages:

• Selective intercellular distribution

• Wide dynamic Ca2+ concentration range (100 nM-100µM)

• High signal to noise ratio (compared to standard fluorescent dye)

• Low Ca2+ buffering effect 

Among bioluminescent proteins, Aequorin is the work-horse.

Aequorin

The reconstruction of the intracellular 

Ca2+ concentration kinetics is a powerful 

diagnostic tool 

Ca2+ signalling

a: pancreatic cancer cells b:colon cancer cells c: breast cancer cells

Teneale, A. et al., Bioch. et Biophys. Acta, 1848 (2015) 2502–2511
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Aequorin emission features

A detector with single photon sensitivity is required

• λem: 469 nm

• Signal lenght ÷ 1 – 40 s

The light emitted by Aequorin is a 

trail of single photons

Counts in gated

windows of 50ms

Single ph. electrons
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Aim

Develop a SiPM based instrument that could be an alternative to PMT 

based apparatus, offering comparable or better performance, 

ruggedness and portability.

Single ph. electrons

• λem: 469 nm

• Signal lenght ÷ 1 – 40 s

The light emitted by Aequorin is a 

trail of single photons

Counts in gated

windows of 50ms
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Previous experiments

• Linearity response limited at 3 MHz due 

to pile-up effects.

AEQ dilution factor
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Problem

• First prototype based on Single SiPM

(6x6mm2) has been demonstrated to be 

able to detect bioluminescence signals in 

living cells

Lomazzi et al., ACS Sens. 2020, 5, 2388−2397

Lomazzi et al., Nucl. Inst. & Meth. Sect. A 2020, 979, 1644-93
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Sensor centering
system

Perfusion chamber

Perfusion chamber fixing system within
the box Peltier cell

-diameter: 1.3 cm
-heigth: 5mm

Experimental setup
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Matrix of 64 SiPM

by Hamamatsu (S13615-1050)

Each SiPM:

Size: 1 x 1 𝑚𝑚2

Cell pitch: 50 𝜇𝑚
Gain = 1.5*106

Single SiPM (6x6mm2) VS a matrix of SiPMs

• Minimum Detectable Signal (MDS) is limited by Dark Count Rate (DCR)

• Linearity in counting is limited by the pile-up probability

The indipendent readout of 1x1mm2 SiPMs improves the linearity range allowing for 

larger acceptance. The price to pay is the system complexity

Experimental setup
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Simplified Block-scheme

• 64 SiPM readout with single channel HV adjust and temp. compensation

• 1 HV power supply (20 – 100V) with temperature compensation

• Single ph-e counting capability

• Maximum counting rate for each channel: 20 MHz

Citiroc 1A embedded in DT5202 readout board

https://www.weeroc.com/products/sipm-read-out/citiroc-1a

https://www.caen.it/products/dt5202/

Experimental setup

https://www.weeroc.com/products/sipm-read-out/citiroc-1a
https://www.caen.it/products/dt5202/


Guglielmo Vesco Quantifying Calcium concentration in living cells 12

DCR sub.

SiPM

matrix

Single

SiPM

Data processing

All

SiPMs

Sum all

SiPMS
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The system operates in counting with a threshold set at 0.5 ph-e

• The SiPM characteristics are largely affected by the over-voltage setting:

• Higher over-voltage = higher gain (larger plateau that allows for 

stable condition)

• Higher over-voltage = higher PDE

• Higher over-voltage = higher stocastic effects (i.e. DCR, Crosstalk 

and After Pulse)

13

Staircase VS Over Voltage

PDE VS Over Voltage DCR VS Over Voltage

Working point definition
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The chosen working point is a compromise of all these effects

• MDS = 3 𝐷𝐶𝑅

• FoM = 
PDE
MDS

FoM VS Over Voltage

Staircase VS Over Voltage

Working point definition
The system operates in counting with a threshold set at 0.5 ph-e

• The SiPM characteristics are largely affected by the over-voltage setting:

• Higher over-voltage = higher gain (larger plateau that allows for 

stable condition)

• Higher over-voltage = higher PDE

• Higher over-voltage = higher stocastic effects (i.e. DCR, Crosstalk 

and After Pulse)
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System linearity

• The aequorin concentration is diluted according to a 

geometric progression of common ratio 2 exploring a 

domain of ~3 orders of magnitude

• The linearity response is assessed using a cell lysate* 

obtained from cytosolic aequorin (cyt-AEQ)-transfected 

HeLa cells, i.e., namely cells engineered to produce 

Aequorin

• Aequorin was burned by injecting high concentrated Ca2+

solution, to ensure that all Aequorin binds to Ca2+and emits 

light.

* A liquid containing suspended components of cells 

whose  membrane has been previously destroyed
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System linearity

y=mxa

log(y) =a*logx + log m

a=1.026 ± 0.007  

log(m)=9.369 ± 0.012

log(y) =a*logx + log m • Linearity range: (300 kHz-125 MHz) 

• For a dilution factor <1/512, the signal of each

SiPM is below the MDS (≈2 kHz)

• The upper limit could be further extended exploiting

pile-up correction techniques

• Linearity range in line with the typical rates 

of a luminometer (500 kHz – 5MHz)

• Upper limit extended by  ≈ 25 times with 

respect to the single SiPM based system

(Lomazzi et al., ACS Sens. 2020, 5, 2388−2397 ) 
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y=mxa

log(y) =a*logx + log m

a=1.026 ± 0.007  

log(m)=9.369 ± 0.012

log(y) =a*logx + log m

Building-up the calibration curve

• Maximum variation of Log(L/Lmax) Ca2+ 

concentration between 1-10 µM .

• Different types of engineered Aequorin allow

to measure the calcium concentration in 

different ranges
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Future perspectives

We are already now to perform measurement on cells by exploiting our system!
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Aequorin: an useful bioluminescence sensor 
to measure calcium transients concentrations in 

living cells

light

• Standard biotechnology methods for cellular Aequorin expression
• Wide dynamic range
• High signal-to-noise ratio
• Low Ca2+-buffering effect

Normalization procedure

20
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Fit function:
ΔPeak = A * (Vbias- Vbreakdown)

This procedure applied to all channels to
estimate bias voltage for each SiPM of the matrix

Vbreakdown = ( 49.24 ± 0.08) V

A = ( 13.05 ± 0.17) code/V

• Each staircase fitted to a sum of error functions to estimate the inflection points
• Difference between the second and the third infl. points  ∝ overvoltage

Ch.0

Ch.0

Ch.0

Matrix SiPMs breakdown voltage
estimation from‘’Staircase’’ data

at sensor T=15°C

Max error ≈ 600 mV

Matrix Av. Breakdown Voltage = 49.511 V
Dispersion (as st. dev.) = 0.136 V

21
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The calibration curve

The emitted light is proportional to bound Ca2+. The 

calibration curve is required to extract the overall 

Ca2+concentration from the detected light

• The calibration strategy

• Starting with a fixed (unknown) dilution of AEQ, 

a series of  known Ca2+ concentrations are 

injected in the sample (the 1st peak is referred to 

the detected light)

• The second injection (high Ca2+ concentration) is 

required to burst all the remaining AEQ

• 1st signal / total signal is only related to the Ca2+

concentration

• The two injections are close in time to avoid 

unbinding kinetics between Ca2+ and AEQ

22

1st injection

2nd injection

1 + 𝐾1𝐶𝑎
2+

1 + 𝐾2 + 𝐾1𝐶𝑎
2+

3

𝑆1

𝑆2

=

𝑆1

𝑆1 + 𝑆2


