The Bergen proton CT project

Dieter Roehrich University of Bergen for the Bergen pCT collaboration

- Bragg peak position the critical parameter in dose planning
- Proton-CT a diagnostic tool for quasi-online dose plan verification
- Towards a clinical prototype
 - Digital tracking calorimeter prototype
 - Results from simulations and beam tests

Norway: University of Bergen - Helse Bergen - Western Norway University of App. Sci. - University of Oslo; The Netherlands: Utrecht University; Hungary: Wigner Research Center for Physics, Budapest - Eötvös Lorànd University, Budapest; Germany: DKFZ Heidelberg - University of Applied Sciences Worms - Technical University TU Kaiserslautern; Russia: St. Petersburg State University; Thailand: Suranaree University of Technology, Nakhon Ratchasima; China: China Three Gorges University, Yichang; Ukraine: RPE LTU, Kharkiv

Particle therapy - the Bragg peak position

Key advantage of ions: Bragg peak

- Relatively low dose in the entrance channel
- Sharp distal fall-off of dose deposition (<mm)!

Challenge

- Stopping power of tissue in front of the tumor has to be known crucial input into the dose plan for the treatment
- Stopping power is described by Bethe-Bloch formula:
 - dE/dx ~ (electron density) x
 ln((max. energy transfer in single collision)/(effective ionization potential)²)

Current practice

- Derive stopping power from X-ray CT
- Problem:
 X-ray attenuation in tissue depends not only on the density, but also strongly on Z (Z⁵ for photoelectric effect) and X-ray energy

Stopping power calculation from X-ray CT – range uncertainties

Clinical practice

 Stopping power calculation derived from single energy CT: up to 7.4 % uncertainty

How to deal with range uncertainties in the clinical routine?

- Increase the target volume by up to 1 cm in the beam direction
- Avoid beam directions with a critical organ behind the tumor

Unnecessary limitations -> reduce range uncertainties

Estimates for advanced dose planning:

Dual energy CT: up to 1.7 % uncertainty

Proton CT: up to 0.3 % uncertainty

Schaffner, B. and E. Pedroni, *The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power.* Phys Med Biol, 1998. 43(6): p. 1579-92.

A comparison of dual energy CT and proton CT for stopping power estimation

David C. Hansen,^{1, a)} Joao Seco,² Thomas Sangild Sørensenn,³ Jørgen Breede Baltzer Petersen,⁴ Joachim E. Wildberger,⁵ Frank Verhaegen,⁶ and Guillaume Landry⁷

1) Department of Experimental Clinical Oncology, Aarhus University

Proton CT

Fig. 14. 3D rendering of the pCT-reconstructed RSP map of a pediatric anthropomorphic head phantom.

V.A. Bashkirov et al. / Nuclear Instruments and Methods in Physics Research A 809 (2016) 120-129

Proton-CT

- quasi-online dose plan verification

high energetic proton beam quasi-simultaneous with therapeutic

beam

measurement of scattered protons

- position, trajectory
- energy/range

- reconstruction of trajectories in 3D and range in external absorber
 - trajectory, path-length and range depend on
 - nuclear interactions (inelastic collisions)
 - multiple Coulomb scattering (elastic collisions)
 - energy loss dE/dx (inelastic collisions with atomic electrons)
- MS theory and Bethe-Bloch formula of average energy loss in turn depend on electron density in the target (and ionization potentials)
 -> 3D map of stopping power
 - -> online verification of dose plan

Clinical pCT - requirements

Operate with clinical beam settings

- Pencil beam scanning mode
 - Beam spot size, scanning speed, intensity
- Scanning time
 - Seconds ... minutes

Detector

- Efficient simultaneous tracking of large particle multiplicities
- Large area (~30 x 30 cm²)
- Radiation hardness
- High position resolution (~10 μm)
- Front detector (first 2-3 layers):
 very low mass, thin sensors (~100 μm)
- Back detector: range resolution <1% of path-length

System

- Compact
- No gas, no HV
- Simple air/water cooling

Required beam energy increases with depth

Clinical pCT - design

Conceptual design

- x,p given by beam optics and scanning system
- x', θ, φ, E' have to be measured with high precision
 - position resolution ~5 μ m with minimal MS, i.e. first two tracking layers very thin

→ Extremely high-granularity digital calorimeter for tracking, range and

energy loss measurement

- Technical design
 - Planes of CMOS sensors Monolithic Active Pixel Sensors (MAPS) with digital readout– as active layers in a sampling calorimeter

The Bergen pCT (clinical) prototype

geometry

front area: 27 cm x 18 cm

"sandwich" calorimeter

- alternating layers of absorbers and sensors
- longitudinal segmentation: 41 layers

aluminium absorbers

- energy degrader, mechanical carrier, cooling medium
- thickness: 3.5 mm

Bragg-Kleeman fit to exp. data at 145 MeV

Sensor layers – Monolithic Active Pixel Sensors (MAPS)

ALPIDE chip

- sensor for the upgrade of the inner tracking system of the ALICE experiment at CERN
- chip size ≈ 3x1.5 cm², pixel size ≈ 28 µm, integration time ≈ 4 µs
- on-chip data reduction (priority encoding per double column)

Particle hit

p⁻ epitaxial layer ∤

p substrate

Mounting sensors on flexible cables

ALPIDE mounted on thin flex cables (aluminium-polymide dielectrics: 30 μm Al, 20 μm plastic) **ALPIDE** chip chip cable

Design and production: LTU, Kharkiv, Ukraine

Flex with 9 ALPIDEs

Module - flex on Al carrier flexible carrier board modules with 2x3 strings with 9 chips each

Assembly at IFT/UiB

- Ultra-thin tracking layers
 - thinned ALPIDEs (50 μm) mounted on a thin flex and glued to a large sandwiched carbon fiber sheet (pyrolitic graphite paper + carbon fleece + epoxy resin)

Sandwiched carbon fiber sheet, fabricated at St Petersburg State University

Setup in the lab

mechanical integration and cooling

Prototype tracking layers designed fabricated by Utrecht University, tested at University of Bergen

How to measure energy loss with a digital pixel sensor?

- Operate ALPIDE in "charge collection by diffusion mode"
- Measure size of charge cluster

 α particle

proton – α – C

How to measure energy loss with a digital pixel sensor?

- Operate ALPIDE in "charge collection by diffusion mode"
- Measure size of charge cluster
- Results from proton and He-beams at different energies (HIT)

Cluster size increases with simulated energy loss

Does 3D reconstruction work with trackers only behind the phantom?

- Single-sided imaging
 - Most Likely Path estimate
 - Entrance beam optics
 - Exit pCT front trackers

- Difference between MC truth and estimated proton path
 - Beam spot size: 7 mm
 - -> deviations ≤ 1.2 mm

Krah, N., et.al., (2018). A comprehensive theoretical comparison of proton imaging set-ups in terms of spatial resolution, Physics in Medicine & Biology 63 (13): 135013.

Radiographic image reconstruction - pRAD

 Quality of head phantom radiographs – WET* errors (simulation)

* WET: Water Equivalent Thickness

Collins-Fekete, C.-A., et al., (2016). A maximum likelihood method for high resolution proton radiography/proton CT, Physics in Medicine and Biology 61 (23): 8232.

pCT (3D) reconstruction

 Reconstruction of the Catphan® CTP528 line pair module (simulation)

Algorithms:
DROP, TVS, FDK;
Penfold, S. N., et al., (2010).
Total variation superiorization schemes in proton computed tomography image reconstruction,
Medical Physics 37 (11): 5887–5895.

What's next?

- Construction of pCT system
 - Sensors have been produced, mounting of sensors to flex cables has started
 - Assembly and integration into services (power, cooling, readout)
- Commissioning with proton beams at the Bergen proton therapy facility in 2024
- Online Bragg peak monitoring during treatment
 - pCT as an imaging calorimeter detects all secondaries charged particles, photons and neutrons
 - -> pCT as particle/energy flow monitor
 - Matching the 3D-position of the Bragg-peak inside the patient to the shower shape of emitted particles
 - -> Machine Learning methods like CNN
 - First studies (simple water phantom, supervised learning):
 - Precision of beam energy reconstruction: ~2 MeV
 - position resolution of the Bragg-peak: ~1-2 mm (tbc)

This is the end