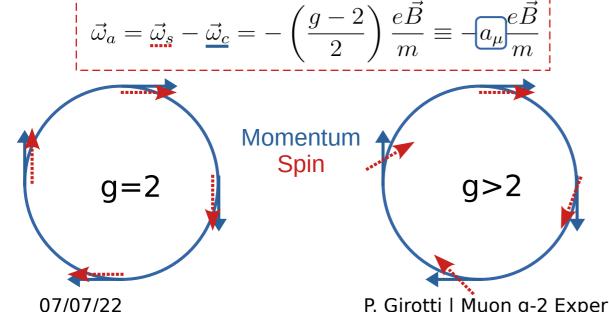


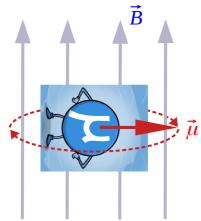
Small experiment, Big Data: the data production of the Muon g-2 Experiment

41st International Conference on High Energy Physics 8 July 2022

Paolo Girotti (INFN Pisa)

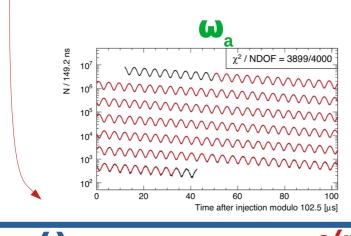
on behalf of the Muon g-2 collaboration


Outline


- Muon g-2 in a nutshell
- Small experiment, big data
- Reconstructing the data
- Technical tools
- Production challenges

Muon g-2 primer

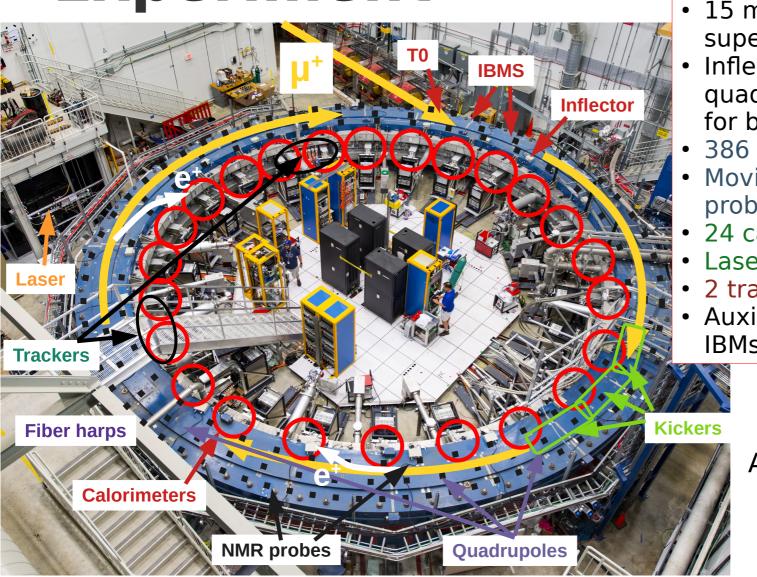
- The Muon g-2 Experiment (E989) at Fermilab measures the muon anomalous magnetic moment very precisely
 - Goal: repeat and improve BNL (2001) measurement with 4x precision
- A beam of polarized muons circulates inside a storage ring
- The <u>magnetic field</u> strength is measured by NMR probes
- Decay positrons carry the <u>precession signal</u> and are detected by calorimeters


The muon precession frequency is influenced by the interactions with all possible virtual particles

Master formula

$$a_{\mu} = \frac{\omega_a}{\tilde{\omega}_p'(T_r)} \frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2} \longrightarrow$$

Constants known from other experiments with high precision


Three measured quantities:

- ω_a: Muon anomalous precession frequency
- ω_p: Larmor precession frequency of protons in water (mapping B)
- ρ_r: Muon distribution in the storage ring

Goal: measure a_{μ} with 140 ppb accuracy (100 stat + 100 syst)

The Muon g-2 Experiment

• 15 meter wide dipole superconducting magnet

 Inflector, kickers, quadrupoles, collimators for beam insertion

• 386 NMR probes

Moving trolley with 17 pp probes

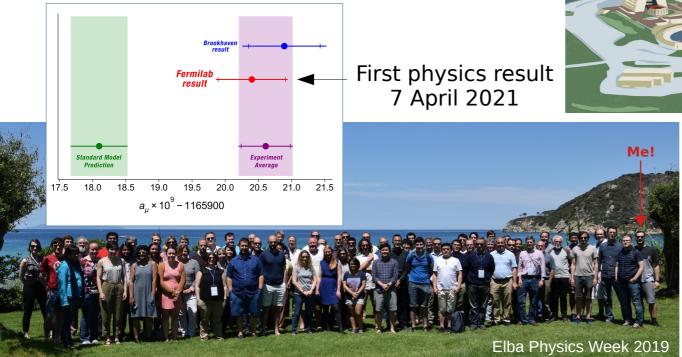
• 24 calorimeters

Wa

Laser calibration system`

• 2 tracker stations $\rho(r)$

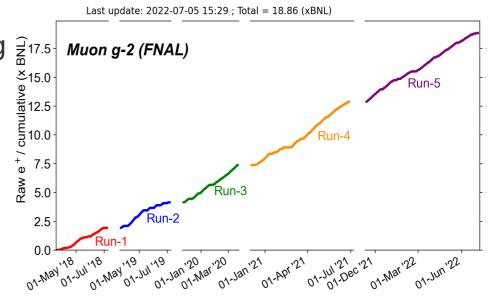
 Auxiliary detectors: T0, IBMs, Fiber harps


A lot of components and detectors

→ a lot of data!

"Small" experiment

- Muon g-2 is a relatively small HEP experiment
- Part of Fermilab Muon Campus
- ~200 collaborators from 7 countries
- Very young community (40% under 35 yo)



"Big" data

- 16 bunches of muons every 1.4 s
- Muons circulate for 700 μs, generating
 ~2000 positron hits on calorimeters
- 1296 calorimeter channels @800 MHz
- 2048 tracker channels @400 MHz
- One event is a stored bunch
- One subrun (2 GB) every ~8 seconds
- 24/7 running for 4-7 months each year
- Currently running 5th year of production
 - → Collected ~6.5 PB of raw data so far
 - → Plus simulation ~2 PB

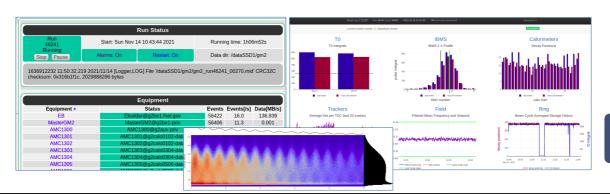
	Raw	Offline	Subruns
Run1	0.4 PB	0.3 PB	258108
Run2	0.5 PB	0.5 PB	294207
Run3	1.0 PB	1.2 PB	559377
Run4	2.0 PB	1.7 PB*	1121703
Run5	2.5 PB*	-	1423000*

*Under production

From raw to a_µ

- One result, many pieces
- **Database** Reconstruction is part of the analysis Hardware, connections Calibration constants Slow control data Data quality cuts **Field reconstruction** Field DAQ Calibrations, corrections NMR probes 4D omega p map (x, θ, ϕ, t) Trolley Field analysis $\tilde{\omega}_{_{\mathrm{D}}}$ Slow control Muon decay distribution omega p **Tracker reconstruction** Lost muons, pileup Muon distribution **Main DAQ** Calorimeters Trackers Laser, auxiliary Slow control **Positron analysis Calo reconstruction** ω_{a} Lost muons, pileup Fit, calibration, clustering CBO, wiggle fit Simulation Beam dynamics

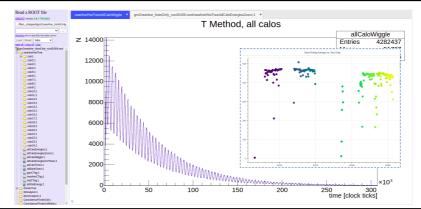
Muon distribution


E field and pitch corrections

Data reconstruction

Online

- · Fraction of data
- Instantaneous plots
- DAQ and DQM



► Nearline

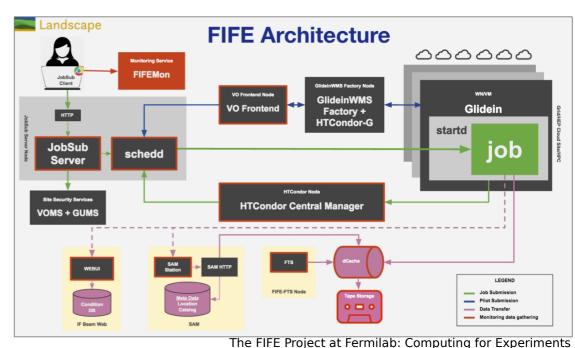
- · All data analyzed and plotted
- Standard calibration
- Useful for quick physics analysis
- Results in ~30'

Offline

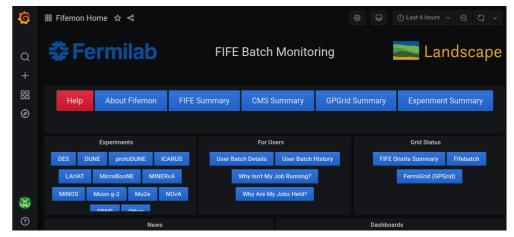
- Complete and fully calibrated reconstruction
- Involves pre- and full- productions
- Multiple reconstruction techniques
- · Version-controlled, produced with POMS on grid
- Final results in >1 year

Full-production -

Raw


data

DOC



FIFE environment

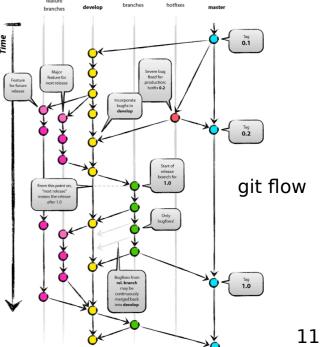
- Fabric for Frontier Experiments toolkit for data management and job submission
- SAM for management of file metadata
- <u>Samweb</u> for job visualization
- <u>FTS-IFDH</u> system for high speed transfer between tape, cache, and grid nodes
- Jobsub scheduler via HTCondor
- Monitoring tools on <u>Grafana</u>
- Designed for Fermilab infrastructure
- Well suited for Muon g-2 needs

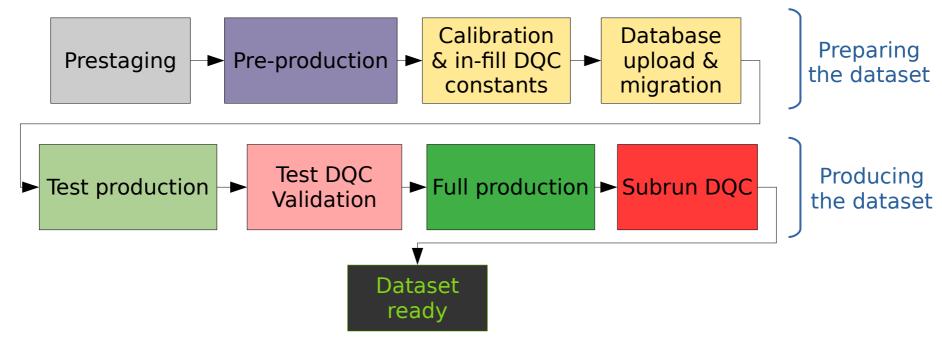
https://doi.org/10.22323/1.282.0176

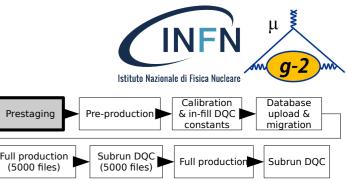
Offline reconstruction

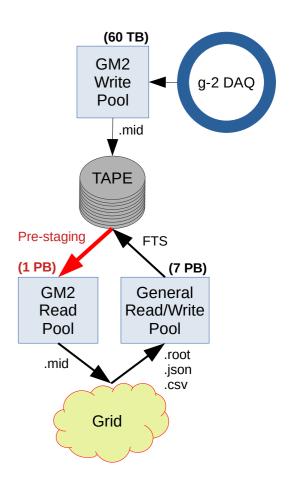
- We use *art* framework
 - Highly modular
 - Made for HEP physics
 - Seamless transition between
- ROOT/C++ based software
- Code repository with version control

simulation and real data


- One of the first Fermilab experiments to use git
- Hosted by Redmine




Production workflow


- Production of datasets happens in multiple steps
 - Multiple datasets proceeding in parallel
- Pre-production is a light processing of the data with the aim to obtain calibration constants and per-bunch DataQualityCuts (DQC)
- Full-production is the complete production of calibrated data and subrun DQC

Data staging

- First step is to <u>pre-stage</u> the dataset
 - Typical dataset size: ~100k files, ~200 TiB
- <u>Dedicated</u> 1 PB GM2 Read <u>pool</u> for prestaging raw files
- Careful calendar management of datasets by offline managers
- At any given time, typically:
 - 3 datasets are staged and under reconstruction
 - 3 datasets are being prestaged
 - 3 datasets are leaving the pool
- Depending on infrastructure load, 3-6 days to prestage 200 TB of data from tape to disk
- New files from grid get stored on a public ~7
 PB pool and get transferred on tape via FTS

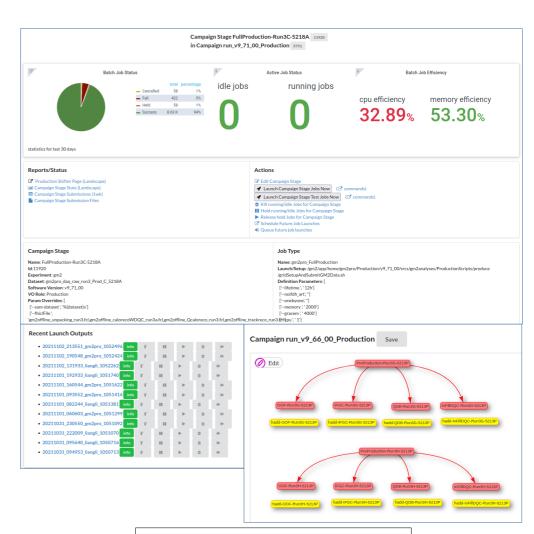


Database

- Database extensively used for both online DAQ configuration and offline data reconstruction
- Recent transition for having critical reconstruction parameters and calibrations to a condition database supported by Fermilab SCD
- PostgreSQL interface
- Interval Of Validity based on run, subrun, event numbers

Terminal interface with psql

				•	
gm2_condit	ions_dev=	:> select o	calonum,xtal	lnum,oofco	ггес
			a,oof_correc		
re begin_t	ime = 243	370196 and	d calonum=1	and iov_i	.d=10
limit 10;					
calonum	xtalnum	oofcorre	ction		
1	0	0.9	932184		
1	1	0.	.94373		
1	2	0.9	933066		
1	3	0.9	928901		
1	4	0.9	30891		
1	5	0.9	918331		
1		0.9	940355		
1	7	0.9	901765		
1	8	0.	.93363		
1	9	0.9	39446		
(10 rows)					


Running on GRID

Operations

System

Management

- Production jobs run on Grid
 - Both onsite and offsite
 - 6000 reserved slots for g-2
 - Data I/O is handled by SAM,
 IFDH and FTS Production
- POMS interface
 - Useful tool to keep track of which version a dataset has been reconstructed with
 - Automatic slicing of dataset, recovery of failed jobs and grid submissions with crontabs
 - Frequent monitoring together with FIFE tools is useful to ensure job success

POMS roles

- Gm2pro for managers
- Gm2shifter for shifters

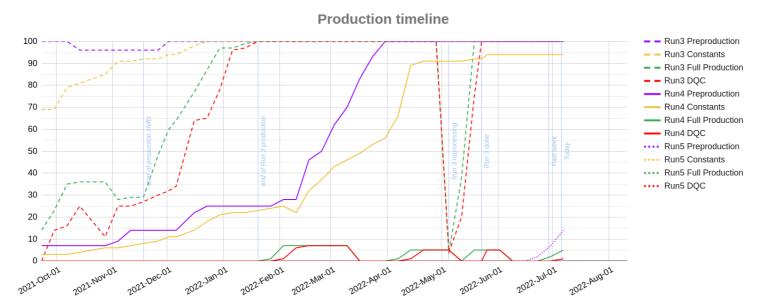
Ne RSC

Simulation

- Important piece for g-2 physics, parallel to data taking
- Many simulation packages for the various parts of the beamline

and the storage ring

- MARS (Proton target)
- BMAD (beamlines & g-2)
- CPU intensive
- <u>G4beamline</u> (beamlines)
- <u>Gm2ringsim</u> (injection & g-2)
- COSY (g-2 storage ring)
- Complete simulation of fields, beam dynamics, muon decays, and detector interactions in the storage ring
- Precision tracking over 200 km (up to 5000 turns in g-2 ring)
- Making use of HPC computing @NERSC
 - First production completed with 10 B events



~30 PFLOPS Cray XC40 machine

Production shifts

- Notable innovation in the Muon g-2 workflow
- All the steps of data production are now pushed and monitored by <u>production shifters</u>, with institutional quota
 - Procedures leveraged from online shift operations
- Proved to be <u>fundamental</u> for keeping production on time for the experiment publications
- Number of weekly shifters lowered from 8 to 3 during the past year, thanks to improvements in the workflow efficiency

Challenges

A list of **challenges** that we faced and how we **solved** them

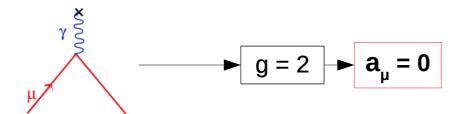
- Many large datasets to process
 - Separate pre- from full- production, enstablish rolling production scheme
 - Prestaging schedule with increased dedicated GM2 disk pool
 - Multiple datasets now processed merged together
- A lot of calibration constants, hard bookkeeping
 - Move everything to psql database
- <u>Lack of workforce</u> to produce the data
 - Introduce production shifters → expand to collaboration (thanks to the new Production-shifter role on POMS too)
- Memory usage of full-production
 - Managed to keep most jobs under 2 GB of memory, which is the "unit" of grid slots. More memory would require more (wasted) cpu

Conclusions

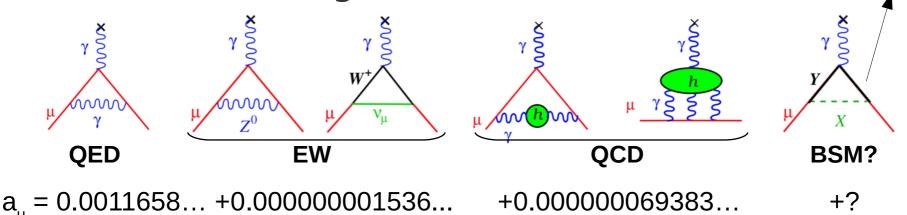
- The Muon g-2 Experiment is a relatively small-sized experiment
- Nonetheless, being a precision experiment, the final result requires reconstructing and analysing multiple PetaBytes of raw data
- Reconstruction and analysis are not really independent multiple reconstructions are sometimes required (especially for the first Runs)
- Production is now a collaboration-wide effort with shifts
- New results expected early next year!

Thank you for the attention

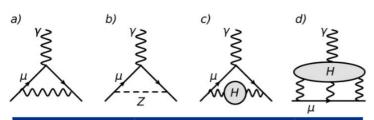
Paolo Girotti | pgirotti@fnal.gov



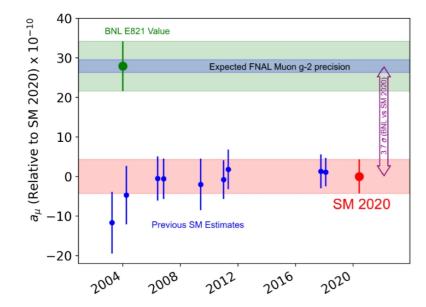
Backup


The muon anomaly

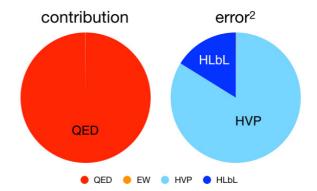
- Deviation from 2 arise from quantum loop corrections
- The simple muon-photon interaction gives g=2


But considering corrections:

In the vacuum, the muon interacts with <u>all</u> the possible virtual particles in <u>all</u> the possible ways Undiscovered particles could affect the value of g-2!



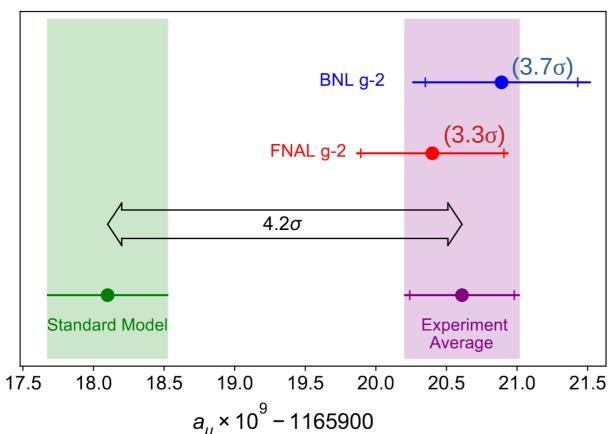
Status before 2021



Source	Value (a _μ x 10 ⁻¹¹)	Error
a) QED	116 584 718.9	0.1
b) EW	154	1
c) HVP	6845	40
d) HLBL	92	18

Muon g-2 Theory Initiative arXiv:2006.04822

Standard Model theory



QCD loops account for:

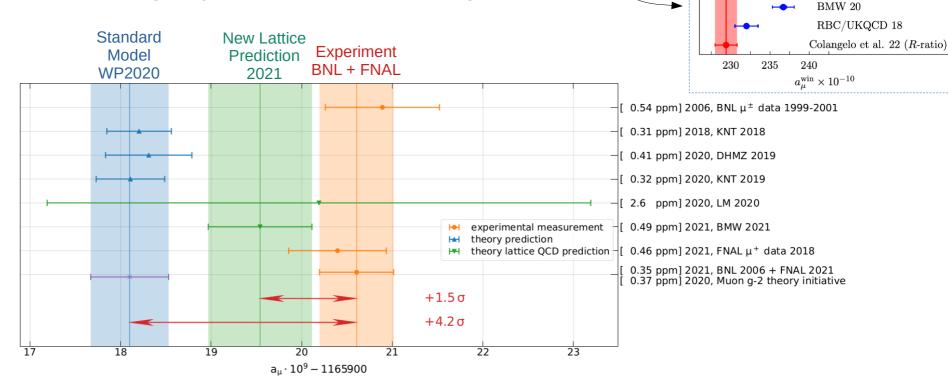
- 0.006% of the contribution
- 99.95% of the uncertainty
- a_{μ} measured at Brookhaven National Lab (BNL, 2006), and the result differs by **3.7** σ with respect to SM prediction
- Bringing the magnet from BNL to Fermilab's powerful accelerator beam
 - Goal: reduce the error by a factor of 4 to 140 ppb

Run 1 result

Quantity	Correction Terms	Uncertainty
	(ppb)	(ppb)
ω_a^m (statistical)	_	434
ω_a^m (systematic)	_	56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle$	_	56
B_k	-27	37
B_q	-17	92
$\mu_p'(34.7^\circ)/\mu_e$	_	10
m_{μ}/m_e	_	22
$g_e/2$	_	C
Total systematic	_	157
Total fundamental factors	_	25
Totals	544	462

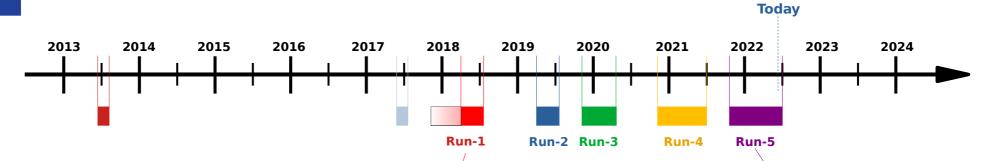
```
a_{\mu} (FNAL) = 116 592 040(54) × 10<sup>-11</sup> (0.46 ppm) a_{\mu} (Exp) = 116 592 061(41) × 10<sup>-11</sup> (0.35 ppm) a_{\mu} (Th) = 116 591 810(43) × 10<sup>-11</sup> (0.37 ppm)
```


https://arxiv.org/abs/2206.06582

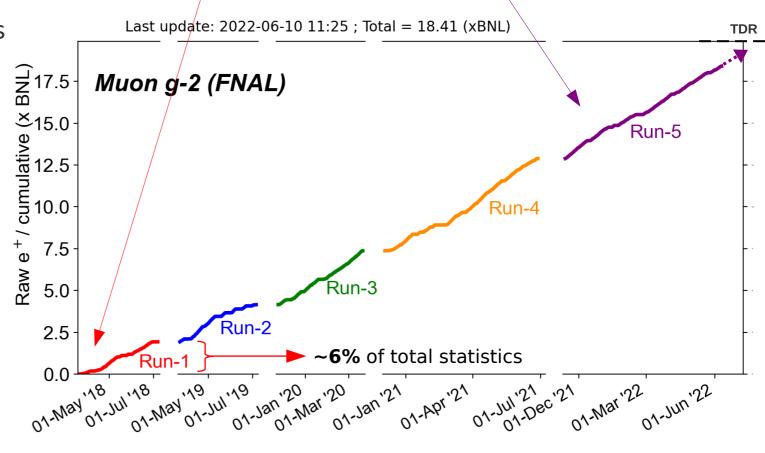

Jun 14th 2022

This work Mainz/CLS

ETMC 21 22 (My update)

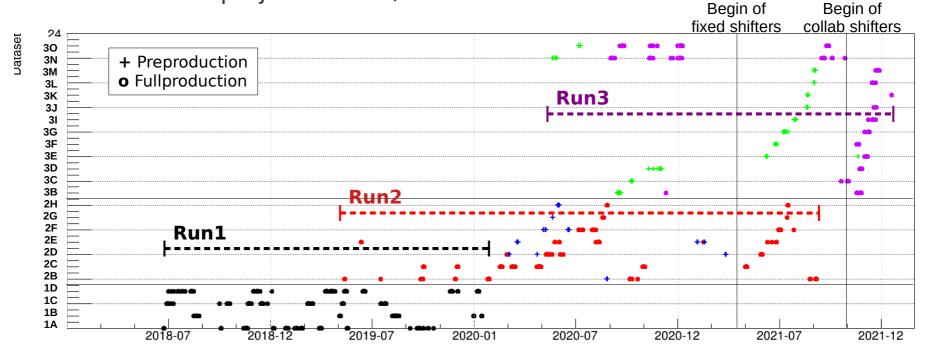

Lattice results

- New Lattice QCD estimation of the hadronic contribution
 - Ab-initio calculation, does not rely on experimental data
 - First lattice result to provide an estimate with the error comparable to the dispersive evaluations (< 1%)
 - Currently <u>confirmed</u> by other lattice groups
 - "New g-2 puzzle" in the theory side



Timeline

P. Girotti | Muon g-2 Experiment


- Many improvements from one Run to the next
- Managed to push through Covid isolations with fully remote shifts
- On track to reach design statistics
- A lot of data to analyze

Production time

- Because of the multiple reprocessings, the overall processing time of Runs varied by a lot
 - Run1 took ~1.6 years (258k files)
 - Run2 took ~2.3 years (294k files)
 - Run3 took ~1.6 years (559k files)
- If no reprocessing needed, production now takes ~1 month per 200k files → Run4 projection of 4/5 months

