Introducing Qibo

Towards a hybrid quantum operating system

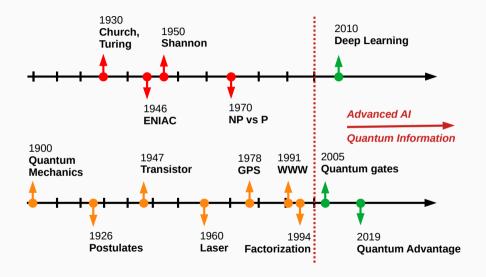
Stefano Carrazza

July 9, 2022

ICHEP2022, Bologna

Introduction

The Quantum Disruption



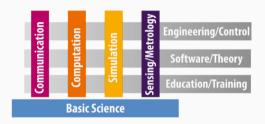
Towards quantum computing

From a practical point of view, we are moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices ⇒ application specific

Quantum research

Structure of research field in quantum technologies:



Quantum computing is a paradigm that exploits quantum mechanical properties of matter in order to perform calculations.

 \Rightarrow Entanglement, superposition, interference, etc.

3

Qubits

What is a qubit?

Let us consider a two-dimensional Hilbert space, we define the computational basis:

$$|0\rangle \rightarrow \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad |1\rangle \rightarrow \begin{pmatrix} 0\\1 \end{pmatrix}.$$

A quantum bit (qubit) is the basic unit of quantum information and it is written as:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \rightarrow \begin{pmatrix} \alpha \\ \beta \end{pmatrix},$$

where α, β are complex numbers and the state is normalized, i.e. $|\alpha|^2 + |\beta|^2 = 1$.

4

Multiple qubits states

A system with n qubits lives in 2^n -dimensional Hilbert space, defining the basis:

$$|0\rangle_{n} = |00...00\rangle, |1\rangle_{n} = |00...01\rangle, |2\rangle_{n} = |00...10\rangle, ..., |2^{n} - 1\rangle_{n} = |11...1\rangle$$

therefore a generic n qubits state is defined as

$$|\psi_n\rangle = \sum_{i=0}^{2^n-1} \alpha_i \, |i\rangle_n \quad \text{ with } \quad \sum_{i=0}^{2^n-1} |\alpha_i|^2 = 1$$

i.e. a superposition state vector with 2^n complex numbers.

Quantum circuits

The quantum circuit model considers a sequence of unitary quantum gates:

$$|\psi'\rangle = U_2 U_1 |\psi\rangle \quad \rightarrow \quad |\psi\rangle - U_1 - U_2 - |\psi'\rangle$$

The final state $|\psi'\rangle$ is given by:

$$\psi'(\pmb{\sigma}) = \sum_{\pmb{\sigma'}} U_1 U_2(\pmb{\sigma}, \pmb{\sigma'}) \psi(\sigma_1, \ldots \sigma'_{i_1}, \ldots, \sigma'_{i_{N_{\mathrm{targets}}}}, \ldots, \sigma_N),$$

where the sum runs over qubits targeted by the gate.

- U_2 and U_1 are gate matrices which act on the state vector.
- ullet ψ is a state and it is bounded by memory.

Quantum gates

• Single-qubit gates

- Pauli gates
- Hadamard gate
- Phase shift gate
- Rotation gates

• Two-qubit gates

- Controlled gates
- Swap gate
- fSim gate

• Three-qubit gates

Toffoli

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$-\mathbf{Y} -$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{z}$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$		$\frac{1}{\sqrt{2}}\begin{bmatrix}1&&1\\1&-1\end{bmatrix}$
Phase (S, P)	$-\mathbf{s}$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	$-\mathbf{T}-$		$\begin{bmatrix} 1 & & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)	- z -	\perp	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)	<u>+</u>		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$

Pauli gates

X gate

The X gate acts like the classical NOT gate, it is represented by the σ_x matrix,

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

therefore

$$|0\rangle - X - |1\rangle$$

$$|1\rangle - X - |0\rangle$$

Z gate

The Z gate flips the sign of $|1\rangle$, it is represented by the σ_z matrix,

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

therefore

$$|0\rangle$$
 — Z — $|0\rangle$

$$|1\rangle - \boxed{Z} - - |1\rangle$$

Hadamard gate

The Hadamard gate (H gate) is defined as

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Therefore it creates a superposition of states

$$|0\rangle$$
 — H — $\frac{|0\rangle + |1\rangle}{\sqrt{2}} \equiv |+\rangle$

$$|1\rangle \ - \boxed{H} - \boxed{ \ \ \frac{|0\rangle - |1\rangle}{\sqrt{2}} \equiv |-\rangle \label{eq:energy}$$

9

Quantum technology

Quantum Technologies

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.

Trapped ions

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

Silicon quantum dots

These "artificial atoms" are made by adding an electron to a small piece of pure silicon. Microwaves control the electron's quantum state.

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths can encode quantum information.

Diamond vacancies

A nitrogen atom and a vacancy add an electron to a diamond lattice. Its quantum spin state, along with those of nearby carbon nuclei, can be controlled with light.

Number entangled

Company support

Google, IBM, Quantum Circuits

Pros

Fast working. Build on existing semiconductor industry.

Cons

Collapse easily and must be kept cold.

14

ionQ

Very stable. Highest achieved gate fidelities.

Slow operation. Many lasers are needed.

2

Intel

Stable. Build on existing semiconductor industry.

Only a few entangled. Must be kept cold.

N/A

Microsoft, Bell Labs

Greatly reduce errors.

Existence not yet confirmed.

6

Quantum Diamond Technologies

Can operate at room temperature.

Difficult to entangle.

(a) Superconducting device assembled by IBM (b) Chip based of bled by IBM

Quantum Algorithms

There are three families of algorithms:

Gate Circuits

- Search (Grover)
- QFT (Shor)
- Deutsch
- ...

Variational (AI inspired)

- Eigensolvers
- Autoencoders
- Classifiers
- ...

Annealing

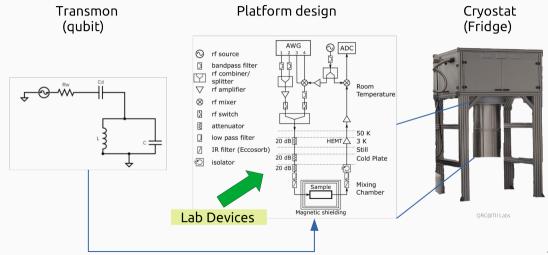
- Direct Annealing
- Adiabatic Evolution
- QAOA
- . . .

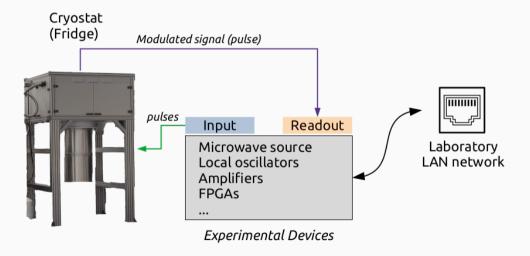
Challenges

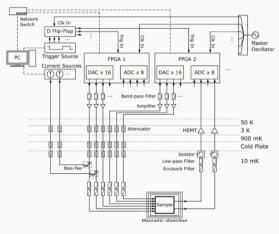
Challenges

Quantum tech. involves multiple challenges:

- simulate efficiently algorithms on classical hardware for QPU?
- control, send and retrieve results from the QPU?
- error mitigation, keep noise and decoherence under control?







Platform complexity increases with qubits.

More devices are required.

Operation **scheduling** is necessary.

Calibration procedures must be periodic.

Challenges

Language API

Quantum Models

Simulation

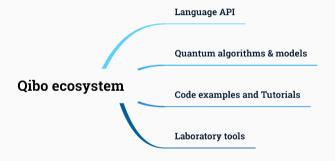
Remote access

Cluster infrastructure

Introducing Qibo

Introducing Qibo

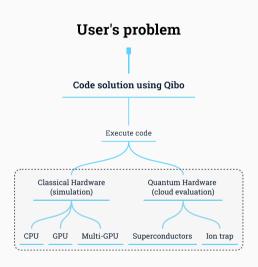
Qibo is an open-source full stack **API** for quantum simulation and hardware control. It is platform **agnostic** and supports **multiple backends**.



https://github.com/qiboteam/qibo

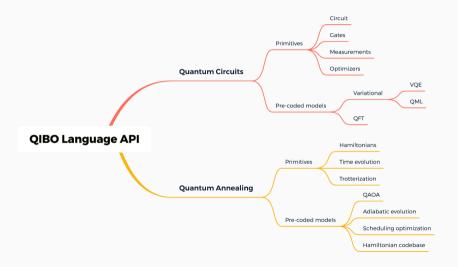
https://arxiv.org/abs/2009.01845

Abstractions in Qibo



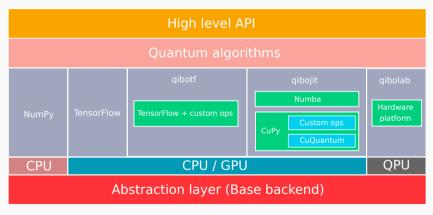
- Single piece of code
- Automatic deployment on simulators and quantum devices
- Plugin backends mechanism

Computational models in Qibo



Abstractions in Qibo

Qibo stack



Qibo simulation benchmarks

Qibojit

qibojit uses just-in-time technology for state vector simulation:

 on CPU → Numpy tensors and custom operations compiled with Numba JIT.

```
from numba import njit, prange
@njit(parallel=True, cache=True)
def apply gate kernel(state, gate, target):
    """Operator that applies an arbitrary one-gubit gate.
    Aras:
        state (np.ndarray): State vector of size (2 ** ngubits.).
        gate (np.ndarray): Gate matrix of size (2, 2).
        target (int): Index of the target qubit.
    k = 1 \ll target
    # for one target qubit: loop over half states
    nstates = len(states) // 2
    for g in prange(nstates):
        # generate index with fast binary operations
        i1 = ((g >> m) << (m + 1)) + (g & (k - 1))
        i2 = i1 + k
        state[i1], state[i2] = (gate[0, 0] * state[i1] + \
                                gate[0, 1] * state[i2].
                                gate[1, 0] * state[i1] + \
                                gate[1, 1] * state[i2])
    return state
```

Qibojit

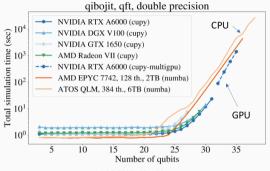
qibojit uses just-in-time technology for state vector simulation:

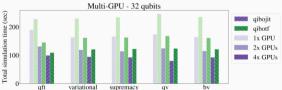
- on CPU → Numpy tensors and custom operations compiled with Numba JIT.
- on GPU → CuPy tensors and custom operations with:
 - CuPy JIT Raw Kernels
 - cuQuantum Python API

Framework Integrations

cuQuantum is integrated with leading quantum circuit simulation frameworks. Download cuQuantum and get dramatically accelerated performance from your framework of choice, with zero code changes.

Qibojit





Qibo implements a high performance state vector simulation framework.

- → Supports CPU, GPUs and multi-GPU.
- \rightarrow NVIDIA and AMD (ROCm) GPUs.
- → Reduced memory footprint.

```
import numpy as np
from qibo import models, gates

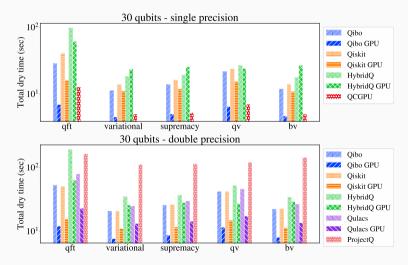
# create a circuit for N=3 qubits
circuit = models.Circuit(3)

# add some gates in the circuit
circuit.add([gates.H(O), gates.X(i)])
circuit.add([gates.HX(O, theta-mp.pi/6))

# execute the circuit and obtain the
# final state as a tf. Temsor
final_state = circuit()
```

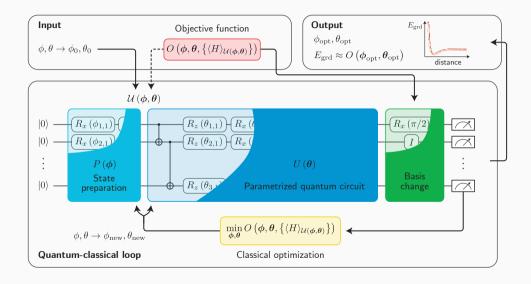
Qibo vs other libraries

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks

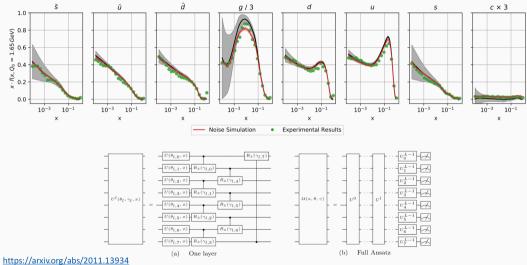


Investigating models for HEP

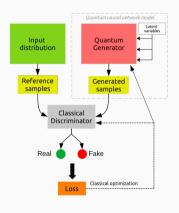
Novel quantum models for HEP

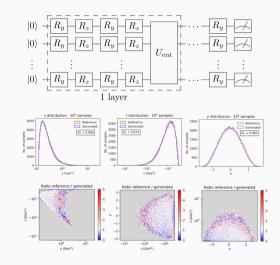


Determination of parton distribution functions using QML



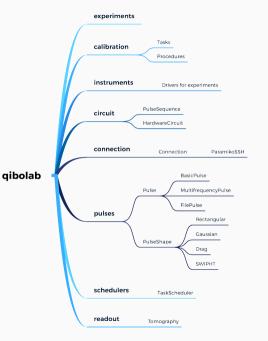
MC event generation using Style-qGAN





https://arxiv.org/abs/2110.06933

Quantum hardware control



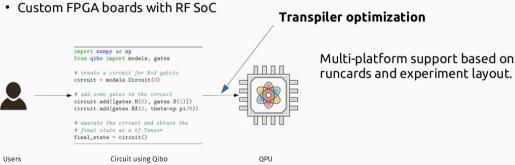
QPU support using qibolab:

- Agnostic layout.
- Multiple experiments support.
- Plug & play for instruments.
- Tools for hardware control.

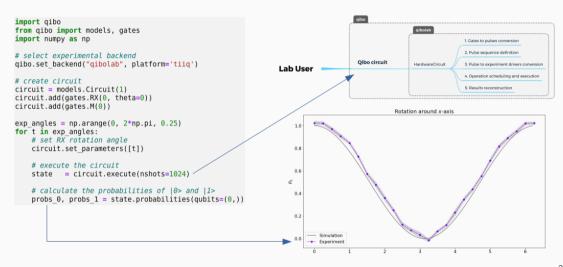
Example

Qibo includes circuit to quantum hardware transpiler for:

- Wavefunction generators
- Local oscillators
- QBlox devices
 Contain EBCA has adaptithe



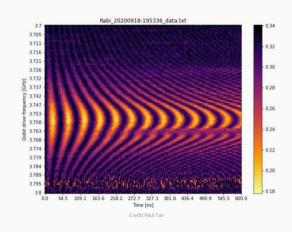
Example



Example

Qibo includes qubit characterization and calibration procedures such as:

- → Resonator spectroscopy
- → Qubit spectroscopy
- → Rabi pulse length, gain and amplitude
- → Ramsey interferometry
- → T1 determination
- → Spin echo



Outlook

Outlook

Qibo is a framework for quantum research acceleration:

- · Publicly available as an open-source project
- Designed with modular layout
- · Community driven effort

We invite you to try out Qibo!

Code: https://github.com/qiboteam/qibo

Docs: https://qibo.readthedocs.io

