Introducing Qibo

Towards a hybrid quantum operating system

Stefano Carrazza

July 9, 2022

ICHEP2022, Bologna

Introduction

The Quantum Disruption

1930
Church, 1950 i 2010 .
Turing Shannon : Deep Learning
——t t t — ; —— t >
ENIAC NP vs P i Advanced Al
: —
: Quantum Information
1900 g
Quantum 1947 1978 1991 : 2005
Mechanics Transistor GPS WWW : Quantum gates

1026 1960 1004 2019
Postulates Laser Factorization: Quantum Advantage

Towards quantum computing

From a practical point of view, we are moving towards new technologies, in particular hardware
accelerators:

CPU GPU FPGA/ASIC Quantum chip
— Lo
I . [
== |
—

Moving from general purpose devices = application specific

Structure of research field in quantum technologies:

&
5 2
5 £
S 5
=
= =)
E £
= g2
- v
v

Computation

Basic Science

Quantum computing is a paradigm that exploits quantum mechanical properties of matter in
order to perform calculations.
= Entanglement, superposition, interference, etc.

Qubits

What is a qubit?

Let us consider a two-dimensional Hilbert space, we define the computational basis:

))

A quantum bit (qubit) is the basic unit of quantum information and it is written as:

) = a|0) + B1) - (g)

where «, 3 are complex numbers and the state is normalized, i.e. |a|? + 3|2 = 1.

Multiple qubits states

A system with n qubits lives in 2"-dimensional Hilbert space, defining the basis:
|0),, =100...00), |1),, =100...01), |2),, =]00...10), ...,[2" = 1) =|11...1)

therefore a generic n qubits state is defined as

2" —1 2" —1
Wn) = Y aili), with > ;=1
i=0 =0

i.e. a superposition state vector with 2’ complex numbers.

Quantum circuits

The quantum circuit model considers a sequence of unitary quantum gates:
W) =Ulile) — [4) %)

The final state [¢') is given by:

Lo
7 7 UNtargets

V(o) = ZUlUg(U,o")w(ol, - AT/ e s ON),

where the sum runs over qubits targeted by the gate.

e U and U; are gate matrices which act on the state vector.

e 1) is a state and it is bounded by memory.

Quantum gates

Operator Gate(s) Matrix
Pauli.X (X) - [
¢ Single-qubit gates Pauli-Y (Y) i
e Pauli gates Pauli-Z (2) —Hz}- Lo
e Hadamard gate Hadamard (H) —{u}- S
e Phase shift gate Phase (S, P) s} [
. .
Rotation gates /8 (T) b o]
¢ Two-qubit gates Controlled Not i 0 10 0
CNOT, CX) [“ 1 ‘]
e Controlled gates (ey
° Swap gate Controlled Z (CZ) v : [é :’Z g §]
e fSim gate
. L 0 0o
. SWAP X R
e Three-qubit gates) L 56]
e Toffoli Toffoli 113ty
ocaor, £ {ss SRS]
CCX, TOFF) © 0 5 0 0 o0 1

Pauli gates

X gate
The X gate acts like the classical NOT gate, The Z gate flips the sign of |1), it is
it is represented by the o, matrix, represented by the o, matrix,
0 1 1 0
Oy = g, —
10 0 -1
therefore therefore

0) 1) 10) 10)
1) 10) 1) — 1)

Hadamard gate

The Hadamard gate (H gate) is defined as
1 1 1
H=—
V2 \1 -1
Therefore it creates a superposition of states

o —{E- Bt
n - PRt

Quantum technology

Quantum Technologies

Current

Capacitors

Inductor

+—Microwaves

Superconducting loops
Aresistance-free current
oscillates back and forth around
acircuit loop. An injected
microwave signal excites the
current into super-
position states.
Number entangled

9

Company support

Google, IBM, Quantum Circuits

© Pros
Fast working. Build on existing
semiconductor industry.

© Cons
Collapse easily and must be
kept cold

Laser
§ @

Electron

Trapped ions

Electrically charged atoms, or
ions, have quantum energies
that depend on the location of
electrons. Tuned lasers cool
and trap the ions, and put them

14

ionQ

Very stable. Highest achieved
gate fidelities.

Slow operation. Many lasers
are needed.

Microwaves

Silicon quantum dots
These “artificial atoms” are
made by adding an electron to
a small piece of pure silicon.
Microwaves control the
electron’s quantum state.

Intel

Stable. Build on existing
semiconductor industry.

Only a few entangled. Must be
kept cold.

Topological qubits
Quasiparticles can be seenin
the behavior of electrons
channeled through semi-
conductor structures. Their
braided paths can encode

quantum information.

N/A

Microsoft, Bell Labs

Greatly reduce errors.

Existence not yet confirmed.

Electron

Vacancyﬂ

Laser

Diamond vacancies

A nitrogen atom and a vacancy
add an electron to a diamond
lattice. Its quantum spin state,
along with those of nearby
carbon nuclei, can be

6
Quantum Diamond Technologies

Can operate at room
temperature.

Difficult to entangle.

10

Physical implementation

(a) Superconducting device assem- (b) Chip based on trapped jons techology
bled by IBM

11

Quantum Algorithms

There are three families of algorithms:

Gate Circuits Variational (Al inspired)
e Search (Grover) e Eigensolvers
e QFT (Shor) e Autoencoders
e Deutsch e Classifiers
o o

Direct Annealing
Adiabatic Evolution
QAOA

12

Challenges

Challenges

Quantum tech. involves multiple challenges:
o simulate efficiently algorithms on classical hardware for QPU?

e control, send and retrieve results from the QPU?

e error mitigation, keep noise and decoherence under control?

13

Physical implementation

Transmon
(qubit)

cd

- W—

Platform design

rf source

bandpass filter
rf combiner/
splitter

rf amplifier

rf mixer

rf switch
attenuator

low pass filter

IR filter (Eccosorb)

Oeom=® K2

isolator

Lab Devices

Room
Temperature

50K

Magnetic shielding

3K
still

" Cold Plate

Mixing
Chamber

!

Cryostat
(Fridge)

14

Physical implementation

Cryostat
(Fridge)

Modulated signal (pulse)

ulses
PUSE Input

Readout
- Microwave source Laboratory
Local oscillators LAN network
Amplifiers
FPGAs

Experimental Devices

15

Physical implementation

Platform complexity increases with qubits.

! Metwork -

| Switch l =)

! D Flip-Flop -
i - :
i —t1l

I B
CEE]
I B
CEE]

Trigger Source

FPGA 1

Current Sources

DAC!IG‘ |ﬂDC!B

|DﬁC! 16| | ADC x B
I

- Band-pass Finer

T —F
1

Isolator {7
Low-pass Filter
Eccosorh Filter [/]

sample|

MAannetic shirkdinn

|
© More devices are required.
Oscillator
Operation scheduling is necessary.
Calibration procedures must be periodic.
50 K
3K
900 mK
Cold Plate
10 mK

16

Challenges

Quantum Models
Language API Simulation

Hardware control _ Remote access
Cluster infrastructure

17

Introducing Qibo

Introducing Qibo

Qibo is an open-source full stack API for quantum simulation and hardware control.
It is platform agnostic and supports multiple backends.

Language API

Quantum algorithms & models

—
leO ecosystem Code examples and Tutorials
—
Laboratory tools
https://github.com/qiboteam/qibo https://arxiv.org/abs/2009.01845

18

https://github.com/qiboteam/qibo
https://arxiv.org/abs/2009.01845

UNIVERSITA
DEGLI STUDI
DI MILANO

UNIVERSITATox
BARCELONA

Q

—
X =
.

National University of Singapore

) @ National
' (Yo Subercomputing
@ by et w* e R

Abstractions in Qibo

User's problem

Code solution using Qibo
e Single piece of code

Execute code e Automatic deployment on
simulators and quantum devices

Y e S : e Plugin backends mechanism
Classical Hardware Quantum Hardware i
(simulation) (cloud evaluation)

CPU GPU Multi-GPU Superconductors Ion trap

20

Computational models in Qibo

QIBO Language API

Circuit
Gates
Primitives
Measurements
Quantum Circuits Optimizers
VQE
Variational
o ML
Pre-coded models B Qf
QFT

Hamiltonians
Primitives Time evolution
Trotterization
Quantum Annealing
QAOCA
Adiabatic evolution
Pre-coded models

Scheduling optimization

Hamiltonian codebase

21

Abstractions in Qibo

Qibo stack

High level API

CuPy

Abstraction layer (Base backend)

qgibotf qgibojit gibolab
Numba
Hardware
NumPy TensorFlow TensorFlow + custom ops
platform

22

Qibo simulation benchmarks

from numba import njit, prange
@njit{parallel=True, cache=True)

def apply_gate_kernel(state, gate, target):
""'Operator that applies an arbiirary one-gqubii gate.

gibojit uses just-in-time technology for state Args:
) . state (np.ndarray): State vector of size (2 ## ngubits,).
vector simulation: gate (np.ndorray): Cate matriz of size (2, 2).
target (int): Indez of the target qubit.
e on CPU — Numpy tensors and custom K =1 << target

. . . # for one target gubi oop
operations compiled with Numba JIT. nstates = len(states) // 2
for g in prange(nstates):

g ate indexr with fast "y
i1 = (g >> m) << (m + 1)) + (g
i2 = i1 + k
state[il], state[i2] = (gate[0, 0] = statel[il] + \

gate[0, 1] + state[i2],
*

gate[1, 0] * state[il] + \
gatel[1, 1] state[i2])
return state

23

gibojit uses just-in-time technology for state vector simulation:

e on CPU — Numpy tensors and custom operations compiled with Numba JIT.
e on GPU — CuPy tensors and custom operations with:

e CuPy JIT Raw Kernels
e cuQuantum Python API

Framework Integrations

cuQuantum is integrated with Leading quantum circuit simulation frameworks. Download cuQuantum and get dramatically accelerated performance
from your framework of choice, with zero code changes

: Cirq P ENNY LANE @ Q|sk|~t QI.BQ XACC

24

gibojit, gft, double precision

NVIDIA RTX A6000 (cupy) CPU -
NVIDIA DGX V100 (cupy) -
NVIDIA GTX 1650 (cupy)

AMD Radeon VII (cupy)

= NVIDIA RTX A6000 (cupy-multigpu)
AMD EPYC 7742, 128 th., 2TB (numba)
ATOS QLM, 384 th., 6TB (numba)

Total simulation time (sec)

GPU

20 25 30 35

[*)
=3
S

Total simulation time (sec)

>

Number of qubits
Multi-GPU - 32 qubits
mm gibojit
W gibotf
1x GPU

2x GPUs

II II II Il 4x GPUs

supremacy bv

Qibo implements a high performance state
vector simulation framework.

- Supports CPU, GPUs and multi-GPU.
- NVIDIA and AMD (ROCm) GPUs.

- Reduced memory footprint.

import numpy as mp
from qibo import models, gates

create a circuit for N=3 qubits
circuit = models.Circuit(3)

add some gates in the circuit
circuit.add([gates.H(0), gates.X(1)])
circuit.add(gates .RX(0, theta=np.pi/6))

ezecute the circuit and obtain the
final state as a tf.Tensor
final_state = circuit()

Qibo vs other libraries

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks

30 qubits - single precision

2
0 Qibo

g ‘] w## Qibo GPU
< i Qiskit
k= ;E i == Qiskit GPU
E, 5 % HybridQ
s =0 3 %% HybridQ GPU
g 10' £ % ® QCGPU
= £ 4

E <

qft variational supremacy qv bv

30 qubits - double precision
Qibo

g 102 w## Qibo GPU
= : Qiskit
£ :3 == Qiskit GPU
g E: HybridQ
= A % %% HybridQ GPU
g :: H n :: i Qulacs
ot :1 s a B :: NSNS Qulacs GPU

= :: N g: :: s ProjectQ

qft qv

26

https://github.com/qiboteam/qibojit-benchmarks

Investigating models for HEP

Novel quantum models for H

7
Input Objective function Output Egra |
4.0 w @ (¢ p {(H> }) Dopts Dopt
,0 — ¢, 0o - .0, U($,0 - |
: @0 Egra~ © (¢°p“ OOPL) distance
\ a t
4 Yvy N
U(s.0) v
0)
0)
0)
L inO (¢,0,{(H <
6.0 Gnes e 350 (0 {Fuwal) | <
Quantum-classical loop Classical optimization)

27

Determination of parton distribution functions using QML

3 a d d u S cx3
1.0
< 0.81 1
]
Q
8 0.6 1
-
I \
S 0.4
8
T 024 1
x
ol
0.0 1 dl
1073 107t 1073 107t 1073 107t 1073 107t 1073 107! 1073 107t
x x x X x x X X
—— Noise Simulation ® Experimental Results

vl v, =) Uz, 6.7) vo B

(a) One layer (b) Full Ansatz
https://arxiv.org/abs/2011.13934

28

MC event generation using Style-qGAN

Latent
variables

Input
distribution
Reference Generated
samples samples
|
s distribution - 10° samples ¢ distrbution - 10° samples o
Classical =] =EER ==
Discriminator .. ot AN
= 2000 1500
= , AY
Real Fake AN
o] T —— 5 5
Sav) ticev) v
_ Classical optimization 3 i
oeed -10° sy, 4 2 ¥ 4 10 4
g 3 4 3
= 2 2
1 -2 1
-0
=5
ey 107 e 10 106 ¢
s (Gev?) t(Gev?) v

https://arxiv.org/abs/2110.06933

29

Quantum hardware control

experiments

I Tasks
calibration
< Procedures

Instruments Drivers for experiments

- PulseSequence
circuit

HardwareCircuit

qibolab

BasicPulse

puise / MultifrequencyPulse

\ FilePulse

Rectangular

pulses

Gaussian
PulseShape

SWIPHT

readout Tomography

QPU support using qibolab:

e Agnostic layout.

e Multiple experiments support.

e Plug & play for instruments.

e Tools for hardware control.

30

Qibo includes circuit to quantum hardware transpiler for:

* Wavefunction generators
* Local oscillators
* QBlox devices

* Custom FPGA boards with RF SoC . L.
Transpiler optimization
y

mport numpy as np

fron qive isport sodols, gates Multi-platform support based on
: 000 runcards and experiment layout.

circuit = models.Circuit(3)

. ="

‘ circuit.add([gates.H(0), gates.X(1}1)
circuit.add(gates.RX(0, theta=np.pi/6))

oo

final_state = circuit()

Users Circuit using Qibo QpPU

31

Example

import gibo _-m
from gibo import models, gates =33
import numpy as np H i e e e

2 Pulse saquence definition

select experimental backend

gibo.set_backend("gibolab", platform='tiiq') Lab User Qiaichoe] : 3 Pulse
T - 4.Gparation scheduling and execution
circuit = models.Circuit(1) e
circuit.add(gates.RX(0, theta=0)) /
circuit.add(gates.M(0)) / Rotation around x-axis
/
exp angles = np.arange(8, 2*np.pi, 0.25) // 10|
for t in exp_angles: e N
set RX rotation angle /
circuit.set parameters([t]) // (i
execute the circuit //
state = circuit.execute(nshots=1024) o8
<
calculate the probabilities of |@> and |I> 04
probs_0, probs_1 = state.probabilities(qubits=(@,))
0.2
. 00 Simulation
- -

32

Qibo includes qubit characterization and
calibration procedures such as:

- Resonator spectroscopy -
— Qubit spectroscopy :
— Rabi pulse length, gain and amplitude o

— Ramsey interferometry
— T1 determination

— Spin echo

00

Rabi_20200918-195336_data.txt

MMH»

545 1091 1636 2182

7127 3213 BLE 4364 409 555 6000
Time [ns]

022

020

018

33

Outlook

Qibo is a framework for quantum research acceleration:

+ Publicly available as an open-source project o

* Designed with modular layout

« Community driven effort

We invite you to try out Qibo!
Code : https://github.com/qgiboteam/qibo
Docs : https://qgibo.readthedocs.io

34

	Introduction
	Qubits
	Quantum technology
	Challenges
	Introducing Qibo
	Qibo simulation benchmarks
	Investigating models for HEP
	Quantum hardware control
	Outlook

