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The ATLAS Liquid Argon r) Calorimeters

@ ATLAS detector at LHC
contains sampling
calorimeters for measurement
of energy deposited by
electrons, photons and
hadronic jets

Q ~ 182k cells

@ active material: liquid argon
@ absorber: lead, copper,
tungsten
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© Triangular pulse by ionization
is amplified, shaped and
digitized at 40 MHz
@ Energy reconstruction with
Optimal Filter (OF)
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Signal Processing at High Luminosity LHC (HL-LHC)

s ol Upgrade Challenges
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Hardware Trigger

Trigger selects events after ~ 2 ps, 150 ns foreseen for energy reconstruction
— Implement algorithms on FPGA for real-time processing
— Short latency and FPGA resources limit complexity of algorithms
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https://cds.cern.ch/record/2285582

Convolutional Neural Network (CNN) Architectures
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CNN Training
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nt Neural Networks (RNN

RNN Architectures

Process new input combined with
previous state

a<®> = RNN—~RNN— . o RNN - RNN 2
1 1 1 1

p<1>| [g<2> 2<t> p<t+1>

Two internal RNN architectures explored:
@ Long Short-Term Memory (LSTM)

@ Vanilla-RNN, fewer internal dimensions
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Single Cell Sliding Window Method

@ Long range correction, full signal
processed in a stream

e High complexity needed, only LSTM

E-p(n 1)
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ADC (n)

Er(n— 3) ET(n) (n+1)

ADC(n +1) ADC(n +4) ADC (n+5)
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@ No long-range correlations, simpler
training

@ Short range correction only




Performance under HL-LHC conditions
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FPGA Implementation: CNNs

ANNs on FPGAs

FPGA implementation required for running ANNs on hardware

@ Operations mapped to FPGA configurable logic, DSPs, memory, ...

@ Fixed-point arithmetic applied
© Support time-division multiplexing

CNNs

kernel = 3
feature
maps = 3

kernel = 4

© CNNs use custom converter from software model to VHDL
@ DSP chain designed for low latency and efficient resource usage
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FPGA Implementation: RNNs

Placement Constraints

Logic locked region for

RNNs implemented in Intel High Level Synthesis (HLS) . o
each cell improves timing

and VHDL

Single Cell & Sliding Window Implementation
Single Cell: Sliding Window:
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r 49 |

@ Single RNN @ 5 RNN instances ‘
instance on @ Independent pipelined ‘
hardware sequences
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Performance on FPGA

P F -
c F AREUS Simulation
g [ EMB Middie (n.g) = (0.5125, 0.0125) Software model vs
ha 1e <p>=140, EP™" > 240 Mev . firmware implementation
.&’ [ —— vanila-RNN(sliding) ~ _i] @ Floating-point
© [ LSTM(single) numbers vs
£ 10'1§ — — LSTM(sliding) fixed-point
CZD F ---- 3-ConvCNN calculations
o 4-Conv CNN @ Good agreement of
107%¢ FPGA
F - implementation with
L o software
10_?’; ":__ @ Confirmed for CNNs
F - : ; -L| : with bit-exact
1l #ELI I: S N software model of
-0.1 -0.05 0 0.05 T
E.(firmware) - E_(software) ’
E (software)

Nick Fritzsche ML for ATLAS LAr Calorimeters



FPGA Resource Usage

@ Process 384 calorimeter cells per FPGA — In total ~ 550 FPGAs needed

@ Time-division multiplexing: e.g. FPGA frequency 480 MHz = 12 - 40 MHz
— Process 12 cells in pipeline on 1 ANN instance

Single Channel Time-multiplexed

3-Conv | 4-Conv | Vanilla LSTM LSTM 3-Conv | 4-Conv | Vanilla | Vanilla | 28x Vanilla
CNN CNN RNN | (single) | (sliding) CNN | CNN (F:mg‘) (mgu (\;m‘u
(sliding)
Multiplicity | 12 | 12 | | 14| 14
Frequency Frequency
Frnax [MHz] 493 480 ‘ 641 ‘ 560 ‘ 517 e T ‘ o ‘ ‘ ‘ w57 ‘ or
ety ‘ Latency [ns] | 125 | 150 | | 121 | 121
deneds | 2 i ‘ et ‘ o ‘ S Max. Channels | 516 | 660 | | 588 | 392"
Resource Resource Usage
Usage 46 42 152 136 3808
#Dsgps G 8 ‘ o ‘ ‘ o #DSPs 08% | 07% | 26% | 24% 66.1%
0.8% 0.7% 0.6% 12.8% 5854 164321
° ° ° % #ALMs ‘ ‘ ‘ ‘ 0.6% ‘ 17.6%
o [ ST | | |
o 0 e * For 28 RNNs with 14-fold multiplexing
w .

—_—  ———
High latency & resource usage for LSTMs ALMs shared with other VHDL implementation
—s Focus on Vanilla RNN firmware components outperforms HLS

— Optimizations needed
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Outlook

Further simulation studies and implementation improvements ongoing

Architecture & Training

@ Consider more realistic conditions @ Add new features
@ Varying pulse shapes @ Provide timing of detected pulse as
@ Time shifts to optimal sampling point output
© LHC bunch train structure
@ Quantization aware training
© Different detector regions

4

Firmware & Hardware

© Optimize firmware implementation

@ Reduce resource usage
@ Increase operation frequency

@ Test ANNs on Stratix-10 hardware

o Integrate ANNSs into higher level LAr signal processor firmware
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@ Advanced signal processing algorithms required for ATLAS LAr energy
reconstruction under HL-LHC conditions

o Two machine learning based approaches: CNNs and RNNs
@ Various ANN algorithms studied
o CNNs and RNNs outperform legacy Optimal Filter algorithm
© FPGA implementation for real-time processing with high bandwidth developed

©® CNNs: VHDL implementation
® RNNs: High level synthesis and VHDL implementation

@ Promising results of firmware evaluation

@ Good reproduction of Keras results with firmware simulation
@ Optimizations ongoing to improve resource usage and latency

— CNNs/RNNs show great potential to improve energy reconstruction of ATLAS LAr
calorimeter system under HL-LHC conditions J

Ref. “Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters”
Aad, G. et al., Comput Softw Big Sci 5, 19 (2021)

Ref. “Energy reconstruction in a liquid argon calorimeter cell using convolutional neural networks”
Polson, L. et al., JINST 17, P01002 (2022)
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