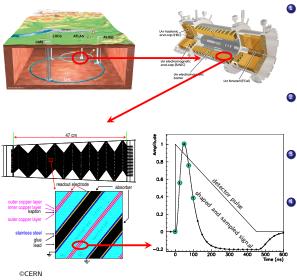


Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

Nick Fritzsche
TU Dresden
on behalf of the ATLAS Liquid Argon Calorimeter Group

8 July, 2022

The ATLAS Liquid Argon (LAr) Calorimeters

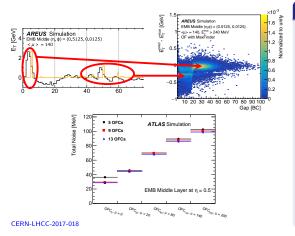


- ATLAS detector at LHC contains sampling calorimeters for measurement of energy deposited by electrons, photons and hadronic jets
- 2 ~ 182k cells
 - 1 active material: liquid argon
 - absorber: lead, copper, tungsten
- Triangular pulse by ionization is amplified, shaped and digitized at 40 MHz
- Energy reconstruction with Optimal Filter (OF)

$$E(t) = \sum_{i=t-N}^{t} a_i \cdot x_i$$

$$Energy = \sum_{i=t-N}^{t} a_i \cdot x_i$$

Signal Processing at High Luminosity LHC (HL-LHC)



Upgrade Challenges

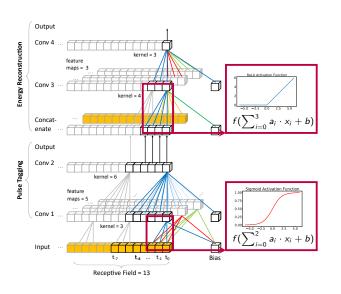
- HL-LHC planned to start in 2029 with 7.5x nominal luminosity
 - \longrightarrow 140-200 proton-proton collisions per bunch crossing (currently \sim 40)
- Close-by and overlapping pulses biased or missed
- Increasing receptive field does not improve OF performance much
- Advanced processing algorithms required

Hardware Trigger

Trigger selects events after $\sim 2\,\mu s$, 150 ns foreseen for energy reconstruction

- → Implement algorithms on FPGA for real-time processing
- → Short latency and FPGA resources limit complexity of algorithms

Convolutional Neural Network (CNN) Architectures



Architecture

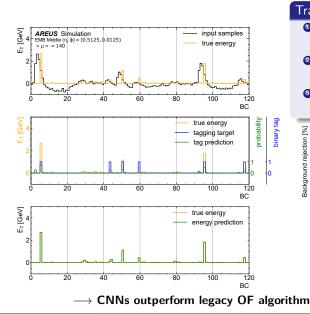
2-tier convolutional network:

- pulse tagging
- energy reconstruction

Layer operations

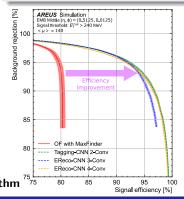
- Linear combination of previous layer
- Apply activation function

CNN Training



Training targets

- Overall: Determine deposited energy out of ADC sequence
- Pulse tagging: Binary sequence, find energy deposits
- Secondary Sec



Recurrent Neural Networks (RNNs)

RNN Architectures

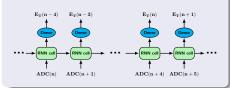
Process new input combined with previous state

Two internal RNN architectures explored:

- Long Short-Term Memory (LSTM)
- Vanilla-RNN, fewer internal dimensions

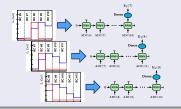
Single Cell

- Long range correction, full signal processed in a stream
- High complexity needed, only LSTM

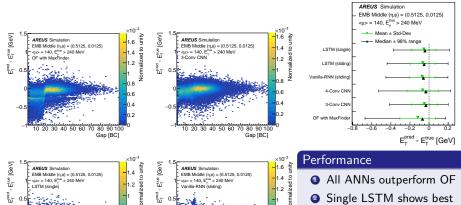


Sliding Window Method

- No long-range correlations, simpler training
- Short range correction only



Performance under HL-LHC conditions



40 50 60 70

- Single LSTM shows best energy resolution and close-by pulse identification
- CNNs and Vanilla-RNN good compromises between complexity and performance

80 90 100

Gap [BC]

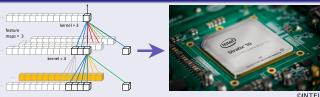
FPGA Implementation: CNNs

ANNs on FPGAs

FPGA implementation required for running ANNs on hardware

- Operations mapped to FPGA configurable logic, DSPs, memory, ...
- Pixed-point arithmetic applied
- Support time-division multiplexing

CNNs



©IN I EL

- ONNs use custom converter from software model to VHDL
- ② DSP chain designed for low latency and efficient resource usage

FPGA Implementation: RNNs

RNNs implemented in Intel High Level Synthesis (HLS) and VHDL

Single Cell & Sliding Window Implementation

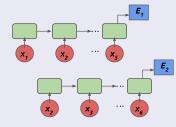
Single Cell:

prediction

RNN

Single RNN instance on hardware

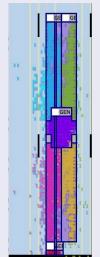
Sliding Window:



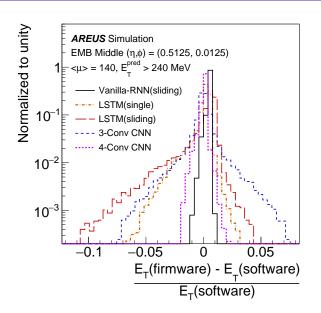
- 5 RNN instances
- Independent pipelined sequences

Placement Constraints

Logic locked region for each cell improves timing



Performance on FPGA



Software model vs firmware implementation

- Floating-point numbers vs fixed-point calculations
- Good agreement of FPGA implementation with software
- Confirmed for CNNs with bit-exact software model of firmware

FPGA Resource Usage

- ullet Process 384 calorimeter cells per FPGA ightarrow In total \sim 550 FPGAs needed
- Time-division multiplexing: e.g. FPGA frequency 480 MHz = 12 · 40 MHz
 - → Process 12 cells in pipeline on 1 ANN instance

Single Channel

	3-Conv CNN	4-Conv CNN	Vanilla RNN (sliding)	LSTM (single)	LSTM (sliding)
Frequency F _{max} [MHz]	493	480	641	560	517
Latency clk _{core} cycles	62	58	206	220	363
Resource Usage					
#DSPs	46 0.8%	42 0.7%	34 0.6%	176 3.1%	738 12.8%
#ALMs	5684 0.6%	5702 0.6%	13115 1.4%	18079 1.9%	69892 7.5%

Time-multiplexed

	3-Conv CNN	4-Conv CNN	Vanilla RNN (HLS)	Vanilla RNN (VHDL)	28× Vanill RNN (VHDL)
Multiplicity	12	12	10	14	14
Frequency F _{max} [MHz]	487	423	455	587	561
Latency [ns]	125	150	302	121	121
Max. Channels	516	660	370	588	392*
Resource Usage #DSPs	46 0.8%	42 0.7%	152 2.6%	136 2.4%	3808 66.1%
#ALMs	21256 2.3%	16698 1.8%	24433 2.6%	5854 0.6%	164321 17.6%

High latency & resource usage for LSTMs

 \rightarrow Focus on Vanilla RNN

firmware components

→ Optimizations needed

ALMs shared with other VHDL implementation outperforms HLS

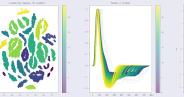
Outlook

Further simulation studies and implementation improvements ongoing

Architecture & Training

- Consider more realistic conditions
 - Varying pulse shapes
 - 2 Time shifts to optimal sampling point
 - UHC bunch train structure
 - Quantization aware training
 - O Different detector regions

- Add new features
 - Provide timing of detected pulse as output



Firmware & Hardware

- Optimize firmware implementation
 - Reduce resource usage
 - 2 Increase operation frequency
- 2 Test ANNs on Stratix-10 hardware
 - Integrate ANNs into higher level LAr signal processor firmware

Summary

- Advanced signal processing algorithms required for ATLAS LAr energy reconstruction under HL-LHC conditions
 - Two machine learning based approaches: CNNs and RNNs
- Various ANN algorithms studied
 - CNNs and RNNs outperform legacy Optimal Filter algorithm
- FPGA implementation for real-time processing with high bandwidth developed
 - ONNs: VHDL implementation
 - 2 RNNs: High level synthesis and VHDL implementation
- Promising results of firmware evaluation
 - Good reproduction of Keras results with firmware simulation
 - Optimizations ongoing to improve resource usage and latency

 \longrightarrow CNNs/RNNs show great potential to improve energy reconstruction of ATLAS LAr calorimeter system under HL-LHC conditions

Ref. "Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters" Aad, G. et al., Comput Softw Big Sci 5, 19 (2021)

Ref. "Energy reconstruction in a liquid argon calorimeter cell using convolutional neural networks" Polson, L. et al., JINST 17, P01002 (2022)