
Accelerating Machine Learning inference using
FPGAs: the PYNQ framework tested on an AWS

EC2 F1 Instance

Dr. Marco Lorusso 1,2

Prof. Daniele Bonacorsi 1,2 Prof. Davide Salomoni 2,3

Dr. Doina Cristina Duma 2 Dr. Diego Michelotto 3

Dr. Riccardo Travaglini 2 Dr. Paolo Veronesi 2,3

1University of Bologna - Department of Physics and Astronomy

2National Institute for Nuclear Physics - Bologna Division

3INFN - CNAF Bologna

8th July 2022

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 0/13



Field Programmable Gate Array

FPGA diagram
Field Programmable
Gate Arrays (FPGAs) → Middle ground
between ASICs and multipurpose CPUs:

▶ Programmables
to perform a wide range of tasks;

▶ Low-level/Near-metal
implementation
of algorithms → low latency;

▶ Blend the benefits
of both hardware and software;

▶ Internal layout made up of logic
blocks (LUTs, flipflops, Digital
Signal Processor slices), embedded
in a general routing structure.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 1/13



Implementing a Neural Network on an FPGA

▶ NN Translation into HLS
(C++) using hls4ml (see next
slide);

▶ Firmware design (I/O
interfaces);

▶ Synthesis and
implementation of the design;

▶ Production of the bitstream
and programming of the
FPGA;

▶ Running of the inference using
an application on the host
machine.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 2/13



The hls4ml package
https://fastmachinelearning.org/hls4ml

▶ Developed by members of the HEP community to translate ML
algorithms written in Python into High Level Synthesis code;

▶ HLS allows the generation of hardware descriptive code (HDL)
from behavioral descriptions contained in C++ program;

▶ The translated Python objects can be injected in the automatic
workflow of proprietary software like Vivado from Xilinx Inc.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 3/13

https://fastmachinelearning.org/hls4ml


The PYNQ project

▶ PYNQ is an open-source
project from Xilinx®;

▶ It provides a Jupyter-based
framework with Python APIs
for using Xilinx platforms;

▶ The Python language opens
up the benefits of
programmable logic (PL) to
people without in-depth
knowledge of low-level
programming languages. https://pynq.readthedocs.io

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 4/13

https://pynq.readthedocs.io


An introduction to PYNQ

▶ The overlay class is the core of the library;

▶ An overlay object is built providing the FPGA design to run on the
PL;

▶ FPGA is programmed and relevant interface is available through
PYNQ API function calls;

▶ It is possible to accelerate a software application, or to customize
the hardware platform for a particular application.

1 from pynq import Overlay

2

3 overlay = Overlay("designbitstream.xclbin") # or .awsxclbin

4 result = overlay.<function described in FPGA design>

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 5/13



The testing ground: AWS F1 Instances

Cloud computing is used to test the
capabilities of these tools in prepara-
tion for deployment of FPGA accel-
erator cards in a local server.

▶ Part of the AWS Cloud
Computing catalogue;

▶ EC2 F1 instances use FPGAs
to enable delivery of custom
hardware accelerations;

▶ Packaged with tools to
develop, simulate, debug, and
compile a design.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 6/13



Deploying on F1

▶ Follow the Application Acceleration development flow, offered by
Vitis™, targeting data center acceleration cards;

▶ Upload the bitstream to a S3 bucket and request the creation of
an Amazon FPGA Image (AFI) accessible from all F1 instances;

▶ Write a Pyhton script using PYNQ APIs.

A ”more traditional” approach is to use OpenCL to write the host
application: both ways follow the same list of basic instructions.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 7/13



The tested model

To test the workflow and the per-
formance, a Neural Network has
been considered:

▶ Regressor in the context of
Level-1 triggering at the CMS
experiment at CERN:
▶ NN predicts transverse

momentum of muons using
their position and direction
in the detector.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 8/13



Dataset to train and test the NN

The entire dataset contains about
300000 simulated muons with a
range in pT from 3 to 200 GeV/c.
A set of information is included in
order to predict the muon pT :

▶ Trigger segments’ position
(wheel, sector, ϕ) for each
station crossed by the particle;

▶ Their direction in CMS global
coordinates (ϕb).

▶ Trigger primitives’ quality (i.e.
number of hits used to build a
segment).

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 9/13



Timing Comparison

A difference in computation times can be
seen between the same algorithm deployed
with PYNQ and OpenCL:

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 10/13



Inference comparison

The FPGA’s output has been vali-
dated against the NN run on a con-
sumer CPU:

▶ small difference traceable to
quantization of floating point
to fixed point;

▶ small bias towards higher values
of ∆pT/pT .

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 11/13



Summary and conclusions

▶ This work is still in progress (i.e. kernel optimization);

▶ The possibility of deploying a Neural Network on a FPGA inside
an AWS instance has been explored;

▶ A fast and easy-to-use alternative to host applications written in
OpenCL has been found in PYNQ using the Python programming
language;

▶ There seems to be no important drawbacks from using this new
approach.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 12/13



Thank you!

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 13/13



Backup

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 14/13



Artificial Neural Networks

Graphical representation
of a Perceptron.

The pT assignment is currently carried out using
precompiled LUTs. An alternative was explored
using Artificial Neural Network (ANN):

▶ An ANN is a network designed
to tackle non-linear learning problems;

▶ The Fully Connected
Multilayer Perceptrons (MLPs) are
made up of single units called Perceptrons;

▶ Perceptrons can be stacked together to
build arbitrarily deep custom networks;

▶ The NN learns during the training process
by receiving input patterns together with the corresponding true
target variable and finding the best set of weights;

▶ The weights are used to predict the
output with unseen data.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 15/13



Neural Network for regression

A Fully
Connected MLP was built using QKeras with:

▶ Input layer: 27 features;

▶ 6
hidden layers: 35, 20, 25, 40, 20, 15 nodes;

▶ Output layer: returns the pT value.

▶ Activation function: Rectified Linear Unit;

▶ Weight pruned.

The model was tested using a consumer
CPU before the hardware implementation.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 16/13



Figure: Transverse momentum resolution histograms computed for the machine
learning model (blue) and Level-1 trigger (red) based momentum assignment.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 17/13



Optimization techniques

To produce an optimized
NN for implementation on an FPGA:

▶ Quantization:
the parameters were converted from
double precision floating-points to fixed
points to exploit the efficiency of DSPs;

▶ Pruning: connections
between nodes with low influence were cut
to minimize the number of paramaters
and operations during inference and reduce
the resources needed for implementation.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 18/13



Quantization

In order to produce an optimized NN for
implementation on an FPGA, the models were
quantized :

▶ Quantization is the conversion from high-precision floating-points
to normalized low-precision integers (fixed-point) parameters;

▶ QKeras is a Python package developed as a collaboration between
Google and HEP researchers to build NN with quantized
parameters;

▶ It has an easy-to-use API: there are drop-in replacements for the
most common layers used with Keras (e.g. Dense → QDense).

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 19/13



Slimming techniques - Weight Pruning

When building a NN model,
the final hardware platform where the inference
computation will be run, has to be considered.

▶ Weight Pruning is the elimination
of unnecessary values in the weight tensor;

▶ Connections
between nodes with low influence are ”cut”
during the synthesis of the HLS design;

▶ This is aimed at minimizing
the number of parameters and operations
involved in the inference computation.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 20/13



OpenCL vs PYNQ

The first thing to do in both cases, is to program the device and
initialize the software context.

1 auto devices = xcl::get_xil_devices();

2 auto fileBuf = xcl::read_binary_file(binaryFile);

3 cl::Program::Binaries bins{{fileBuf.data(),

fileBuf.size()}};↪→
4 OCL_CHECK(err, context = cl::Context({device}, NULL,

NULL, NULL, &err));↪→
5 OCL_CHECK(err, q = cl::CommandQueue(context, {device},

CL_QUEUE_PROFILING_ENABLE, &err));↪→
6 OCL_CHECK(err, cl::Program program(context, {device},

bins, NULL, &err));↪→
7 OCL_CHECK(err, krnl_vector_add = cl::Kernel(program,

"vadd", &err));↪→

1 import pynq
2 ov =

pynq.Overlay("model_binary.awsxclbin")↪→
3 nn = ov.myproject

In OpenCL host and FPGA buffers need to be handled separately and
linked after creation; with PYNQ, the user is only presented with a single
interface for both:

1 std::vector<int, aligned_allocator<int>>

source_in1(DATA_SIZE);↪→
2 OCL_CHECK(err, l::Buffer buffer_in1(context,

3 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,

vector_size_bytes,↪→
4 source_in1.data(), &err))

1 inp = pynq.allocate(27, 'u2')
2 out = pynq.allocate(1, 'u2')

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 21/13



OpenCL vs PYNQ (cont’d)

To initiate data transfers the direction as a function parameter must be
specified in OpenCL, while in PYNQ the same is done with a specific
function:

1 OCL_CHECK(err, err =

q.enqueueMigrateMemObjects({buffer_input}, 0 /*0

means from host*/ ,NULL,&eventinp));

↪→
↪→

1 inp.sync_to_device()

To run the kernel in OpenCL each kernel argument need to be set
explicitly using the setArgs() function, before starting the execution
with enqueueTask(); in PYNQ, the .call() function does everything
in a single line.

1 std::vector<int, aligned_allocator<int>>

source_in1(DATA_SIZE);↪→
2 OCL_CHECK(err, l::Buffer buffer_in1(context,

3 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,

vector_size_bytes,↪→
4 source_in1.data(), &err))

1 nn.call(inp,out)

Finally, the output is retrieved in both cases similarly to the input
transfer:

1 OCL_CHECK(err, err =

q.enqueueMigrateMemObjects({buffer_output},↪→
2 CL_MIGRATE_MEM_OBJECT_HOST));

1 out.synq_from_device()

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 22/13



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance 23/13


	Appendix

