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Introduction Motivation
ML Likelihood method
The traditional approach

Traditional vs ML search of New Physics

Distinguish SM (bckg) vs BSM (signal) in collider data:

@ Design observables, define control regions... —> ML classifiers v~

o For experimental significances, selection cuts — Working points X
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Introduction Motivation
ML Likelihood method
The traditional approach

Traditional vs ML search of New Physics

Distinguish SM (bckg) vs BSM (signal) in collider data:

@ Design observables, define control regions... —> ML classifiers v~

o For experimental significances, selection cuts — Working points X

Is it possible to connect the ML classifier output with the
standard statistical tests without defining working points?

— Machine-Learned Likelihood (MLL) Method
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Introduction Motivation
ML Likelihood method
The traditional approach

The MLL method

Statistical model for N independent measurements, with a high-dimensional set

of observables x
N

L(p,s,b) = p(N, {x;,i = 1,..., N}|u, s, b) = Poiss(N|uS + B) [ [ p(xilu. s, b)
i=1

where S (B) is the expected total signal (background) yield, and

B uS
p(x|p, s, b) = IS+B Pb(x) + IS+ B ps(x)

The relevant to derive exclusion limits on p (considering models with p > 0)

0 ifo>up,
~ L(p,s,b . A
Gu=1<—-2Ln ngv;b§ fo<a<upy,
L(p,s,b coA
—2Ln Z(0.5.5) if o <0,

where (i is the parameter that maximizes the likelihood
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0 if p>p
~ ~ N B, i)+ Sps (X . N
Gu=42u—p)S—2N, Ln(%) if 0<p<p
Sps(xi PN
215 — 25, Ln (1+ trEx)) if <0

where [i is the parameter that maximizes the likelihood
N

ps(xi) _
,;L S ps(xi) + Bpp(xi) !
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The relevant to derive exclusion limits on 1 (considering models with x> 0)
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where [i is the parameter that maximizes the likelihood
N

PS(XI) o
i=Zl 1S ps(xi) + Bpp(xi) !

Sanda Seoane, R.M. 3/11




Introduction Motivation
ML Likelihood method

The traditional approach

Solution: train classifier to distinguish signal from bckg with a balanced dataset.
The classification score maximizing the binary cross-entropy and thus approaches

_ PS(X)
0 = 20 + po()

Dimensional reduction by dealing with o(x) instead of x

ps(x) = Ps(o(x)), and Pb(x) = pp(o(x))
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where p; p(0(x)) are the distributions of o(x) for signal and background,
obtained by evaluating the classifier on a set of pure signal or background events,
respectively.
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Introduction Motivation
ML Likelihood method

The traditional approach

The relevant test statistic for exclusion limits

0 if o>p

. BBu(0(x)) tuShe(0(x)| ;

g = { 2= WS —2XY, L (FREHTEEES)  f 0<a<u
2uS -2V | Ln (1+%) if f1<O0;

with [ such us

) _
Bhsola) |

Y (o(x
2 B stotn) +

The median expected exclusion significance when the true hyphothesis is
assumed to be the bckg-only one (1’ = 0) is

med [Z,[0] = 4/med [§,0]
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Introduction Motivation
ML Likelihood method
The traditional approach

Traditional Binned-likelihood method

In general ps p(x) are not known and are usually approximated by discrete
binned distributions

D
L(p,s,b) = H Poiss (Ng|1Sq + Ba)
d=1

S4 (Bg): expected number of signal (bckg) events in bin d.

The median exclusion significance when the true hypothesis is assumed to be the
bckg-only hypothesis, for the binned likelihoods (Asimov datasets) is given by

b 1/2
—Ja10= _Ba 5
v - (o (0) )]

S<<
VB>>1
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Toy Model: Multivariate Gaussian distributions
Search for a heavy SSM Z’ in dilepton final states at the HL-LHC

Applications

Toy Model: Multivariate Gaussian distributions

@ Toy model in abstract space (x1, x2). Events generated by NV(m, X)
(known generative functions ps (x)).

@ Covariance matrices L = Iox» (no correlation) and m = +0.3(—0.3) 1, for

S (B).
Ensemble: B=50k, S=500
N> distributions —— Background 2500
—— Signal

15 2000 &

3

o

1500 &

-3 -1.5 0 15 3

@ Training of supervised per-event classifier, XGBoost with 1M events per
class (balanced dataset), to distinguish S from B.

Sanda Seoane, R.M. 7/11 )




A Toy Model: Multivariate Gaussian distributions
Applications

Search for a heavy SSM Z’ in dilepton final states at the HL-LHC

Multivariate Gaussian distributions, A Multivariate Gaussian distributions, Ngim =2
0.07 =1 Background —— ML Likelihood
Signal 20 1 — True pdf Likelihood
., 0-06 L, signa —— Binned Likelihood
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@ Results with MLL approach are close to the true pdf scenario and
outperforms the Binned-Poisson method.
@ The ML output is always 1D regardless the dimensionality of the data and
can be easyly binned.
0 if 0>p
G = 20— WS 231, Ln (FREEIEERES) i 0<

218 =251 Ln (14 fp2tetl)) if o<
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Toy Model: Multivariate Gaussian distributions
Search for a heavy SSM Z’ in dilepton final states at the HL-LHC

Applications

For higher dimensional data with Ny, (m, L), £ = Lgimxdim, m = +0.3(—0.3)
1 gim for S (B):

Multivariate Gaussian distributions, Nyim

10
= ML Likelihood

= True pdf Likelihood

8 SIVB, WP=0.75
— =~ S/B, WP=0.50
61 ——- s/VB, WP=0.25
N | e S/VB, WP=0

@ Results with MLL method approach the ones with the true generative
functions.

@ Binned Poisson Likelihood intractable. Common alternative: use the ML
output and define a working point to define a signal enriched region and use
the naive formula for the significance.
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Applications Toy Model: Multivariate Gaussian distributions
PP Search for a heavy SSM Z"in dilepton final states at the HL-LHC

Search for a heavy SSM Z’ in dilepton final states at the HL-LHC

ATLAS prospects at 1/s = 14 TeV and 3000 fb~! for 95% CL exclusion limits on
a Zispy (ATLAS-PHYS-PUB-2018-014).

S: pp—>Zl—>e+e_ B: pp—oete”

Z'-»e+te-

<

—— Binned Likelihood
10734 — MLL

— - Z'ssm

| ==- ATLAS expected

------ ATLAS myz.,,, upper limit

|:| Systematic uncertainty: 6.5% x my
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Conclusions

Conclusions

MLL method allows to obtain exclusion (and discovery) significances for
additive new physics scenarios.

@ Uses a single XGBoost classifier and its full 1D output (no working points),
which allows the estimation of the S and B pdfs needed for statistical
inference.

@ Always easy to bin the output, irrespectively of the dimensionality of the
problem (unlike the Binned Likelihood method).

@ Improves results obtained by traditional techniques in toy models and
realistic analysis, approaching (when possible) the ones computed with true
generative functions.

@ Possible improvements: unsupervised analysis, systematic uncertainties...
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Conclusions

Thank you!
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Conclusions

Impact of the performance of the classifier and the classification score binning:

Multivariate Gaussian distributions, N> Multivariate Gaussian distributions, N3

1.0
—— ML Classifier (XGBoost) 20.0

=== ML Likelihood (30 bins)

= = = Optimal classifier 17.51 === ML Likelihood (100 bins)

0.9 ML Likelihood (1000 bins)
15.0 f —— True pdf Likelihood

0.8 12,5 — Binned Likelihood (10x10 bins)
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o With increasing values of m the classifier performs better.

o Difference between ML Likelihood and the True Likelihood increases with
the AUC (o(x) more concentrated in the boundaries and the binning is not
able to capture the granularity).

o Dependence with the choice of binning (compromise between approximating
optimal results and computational cost).
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