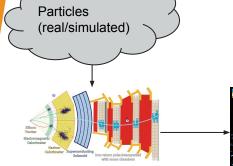


TomOpt: Differentiable Optimisation of Muon-Tomography Detectors

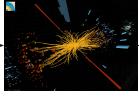
Giles Strong, on behalf of the TomOpt Authors* ICHEP 2022, Bologna, Italy - 09/07/22

*G Strong, T Dorigo, A Giammanco, P Vischia, J Kieseler, M Lagrange, F Nardi, H Zaraket, M Lamparth, F Fanzago, O Savchenko, & A Bordignon.

TYPICAL LHC PROCESSING CHAIN



Isolated optimisation \rightarrow paired / end-to-end optimisation?



Generic

Fixed

working

points

optimisation

of algorithms

Reconstruction

Analysis

Signal/background separation

Measurement

- Domain-driven categorisation
- Separate by decay channel, combine later

Expert-interpr etable data-represe ntations (PID)

Many of these are "necessary evils" for HEP! Time, interpretation, MC corrections, etc.

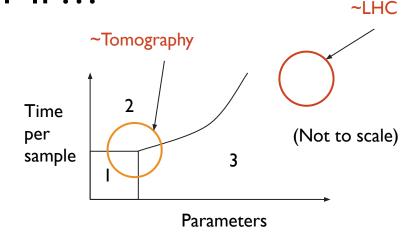
Detection (real/simulated)

- Track first. destroy later
- Kinematic precision
- Dedicated sub-detectors
- Design convenience over analysis convenience

2

WHAT IF...

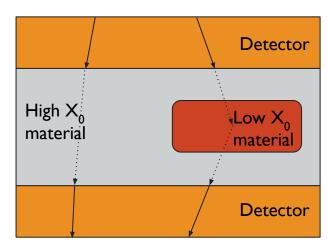
- We can already do measurement-aware analysis optimisation, e.g.:
 - INFERNO (<u>de Castro & Dorigo, 2018</u>)
 - NEOS (<u>Simpson & Heinrich, 2022</u>)
- What about going further?
 - Measurement-aware detector-optimisation
- CERN LHC-style detectors = huge-parameter space + complicated simulation and analysis algorithms
 - Let's start with a simple use-case: muon tomography



- . Grid/random search
- 2. Bayesian optimisation, Simulated annealing, genetic algorithm, particle swap optimisation, ...
- 3. Gradient-based optimisation: Newtonian, gradient descent, BFGS, ...

TOMOGRAPHY VIA MULTIPLE SCATTERING

- Consider a volume with unknown composition
 - E.g. Shipping container, archeological site, nuclear waste, industrial machinery
 - Want to infer properties of the volume:
 - E.g. build a 3D map of elemental composition
- Cosmic muons scattered by volume according to radiation-length (X₀ [m]) of elements in material
 - Measure muons above and below volume
 - Kinematic changes provide info on material composition

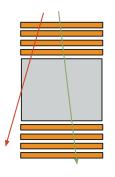


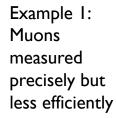
High $X_0 = low$ Low $X_0 = high$ scattering scattering

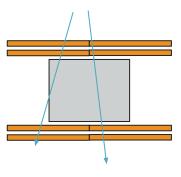
X₀ = average distance between scatterings

PROBLEM

- Each use-case likely to have a budget:
 - E.g. financial, heat, power, spatial, imaging time
- How should detectors be positioned to best function in each use case subject to constraints?
- Domain knowledge, experience, and intuition can help
 - But solutions likely to be based on heuristics and proxy objectives (e.g. lowest uncertainty on muon-path angles)





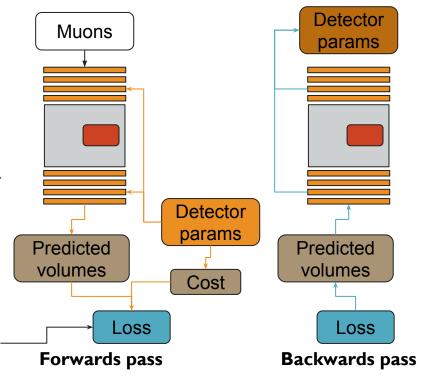


Example 2: Muons measured less precisely but more efficiently

TOMOPT

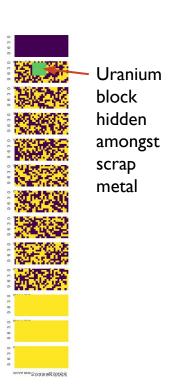
- Python package for differential optimisation of muon-tomography detectors
 - Modular design
 - PyTorch provides autodiff
 - Still underdevelopment; aim is an open-source package
- First, express the entire inference chain as a differentiable system
 - We can now compute the analytical effects of detector parameters (position, size, resolution, etc.) on system outputs
- Now express the desired task as a loss function
 - E.g. error on X₀ predictions, detector costs, time to achieve desired resolution
- We can now backpropagate the loss gradient to detector parameters and optimise via gradient descent
 - Just like a neural network

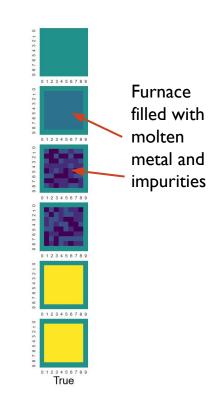
Known volumes



PASSIVE VOLUME SPECIFICATION

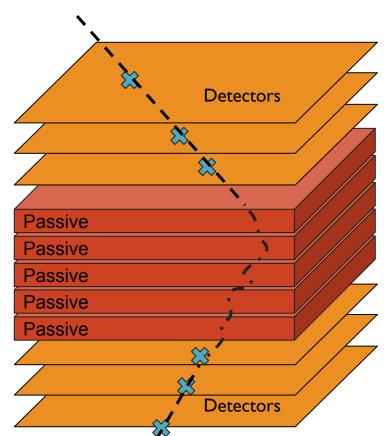
- We can simulate different passive volumes by splitting the space in voxels
 - Each voxel can be a different material
- Muons are scattered according to material density (X₀) of the voxels they pass through
- We can randomly generate typical volumes with pre-specified characteristics
 - These can help simulate different tasks and situations





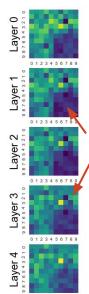
DETECTOR SPECIFICATION

- Detectors panels are placed above and below the volume
- Each panel records a hit when the muons passes through
- We will aim to learn the optimal size and position of each detector panel



INFERENCE

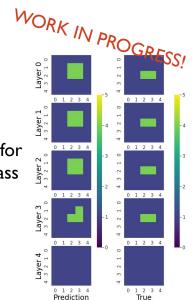
- First: use the hits to reconstruct the muons entering and exiting the volume
- Then: use the changes in muon trajectory to infer properties of the volume
 - Could simply predict the X0 of each voxel
 - Even better: compute a task-specific summary statistic
 - We can also include deep learning algorithms here



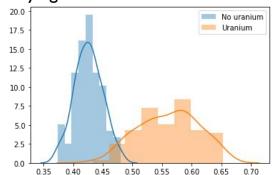
Prediction

Voxel-wise GNN prediction for material class

Voxel X0 predictions
High density block
Low density background



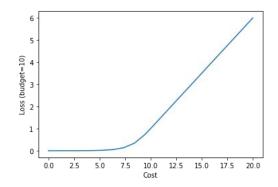
Dedicated summary-statistic for classifying volumes with uranium blocks



LOSSES AND COST

- The loss of the system should contain two components:
 - The error on the predictions
 - E.g. MSE for voxel X₀, or cross-entropy for class predictions
 - The cost of the detectors
 - Cost component smoothly "turns on" near target budget
 - Heavily penalises over-budget detectors
 - Loss scaled according to error loss
- Treat detector just like a neural network:
 - Differentiate the loss w.r.t. the learnable (detector) parameters and update with gradient descent

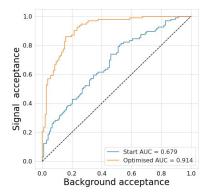
$$\mathcal{L}_{\text{Error}} = \frac{1}{N_{\text{voxels}}} \sum_{i=1}^{N_{\text{voxels}}} \frac{\left(X_{0,i,\text{True}} - X_{0,i,\text{Pred.}}\right)^2}{w_i}$$

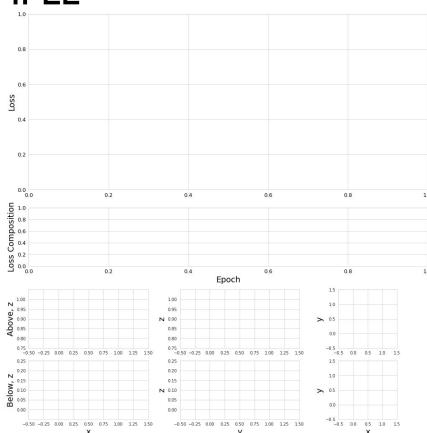


$$\mathcal{L} = \mathcal{L}_{Error} + \alpha \mathcal{L}_{Cost}$$

EXAMPLE

- Task is to infer presence of uranium block in container filled with scrap metal
 - Inference uses a dedicated summary statistic
 - The U block can be anywhere in the volume, so intuitively expect the detectors should be placed centrally in XY over the volume
- Detectors start in corner of volume and optimisation does indeed move them to cover the volume
- Optimised
 detector provides
 large
 improvement to
 ROC AUC





SUMMARY

- Measurement-aware detector-optimisation = challenging but rewarding task
 - Doesn't aim to replace detector experts; provide tools to make more informed design choices
 - Currently testing on a simplified case: muon tomography
- TomOpt indicates this is possible, and is under rapid development
 - Publications and open-source package this year

GETTING INVOLVED

- MODE Collaboration involved in several other projects:
 - ECal, hybrid HCal, Cherenkov arrays, ...
 - Recent whitepaper <u>arXiv:2203.13818</u>
 - Open to new members (<u>contact</u>)
 - TomOpt also welcoming new contributors: giles.strong@outlook.com
- Second MODE workshop on differentiable programming
 - 12-16 September, Crete & online
 - https://indico.cern.ch/event/1145124/

Overview of the sessions:

- · Confirmed keynote speakers
 - o Adam Paszke (Google Brain): DEX
 - o Max Sagebaum (TU Kaiserslautern): High-performance Algorithmic Differentiation
- · Lectures and tutorials:
 - Lecture: Differentiable Programming, Gradient Descent in Many Dimensions, and Design Optimization (Pietro Vischia, UCLouvain)
- · Special events:
 - Hackathon (Giles Strong, INFN Padova): the challenge will open on 1st August 2022, and submissions will be open until September 5th, 2022. prizes (see below) will be given to the winners of the challenge!
 - o Poster session: prizes (see below) will be given to the best posters!
- Applications in muon tomography
- Progress in Computer Science
- Applications and requirements for particle physics
- Applications and requirements in astro-HEP
- · Applications and requirements for neutrino detectors
- · Applications and requirements in nuclear physics experiments
- Discussion on the status and needs of the discipline (one parallel session per each of the other sessions)

SUMMARY

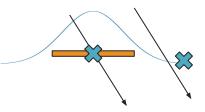
- Measurement-aware detector-optimisation = challenging but rewarding task
 - Doesn't aim to replace detector experts; provide tools to make more informed design choices
 - Currently testing on a simplified case: muon tomography
- TomOpt indicates this is possible, and is under rapid development
 - Publications and open-source package this year

BACKUPS

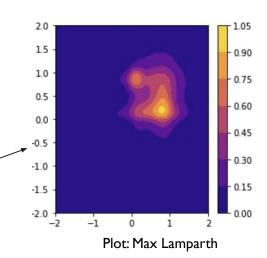
DETECTOR MODELLING

- Assume commercial detectors ⇒ fixed resolution, fixed efficiency, fixed cost per m²
- Optimise XYZ position and XY span
- But, muons either hit or miss detectors.
 How can we make hits be differentiable w.r.t detector parameters?
- Instead, let resolution and efficiency be distributed, e.g. Gaussian centred on panel, with width set by panel span
 - The PDF at the muon position is now diff.
 w.r.t panel position and span
- Can further generalise by using Gaussian

 Mixture model

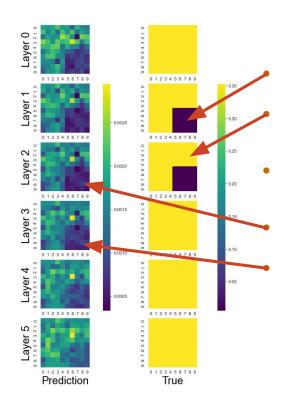


Both muons recorded, but with different resolutions



VOLUME INFERENCE: POCA

- Point of Closest Approach: Assign entirety of muon scattering to single point
 - Invert analytic scattering model to compute X₀
 - Average X₀ predictions in each voxel
- We know, though, that the muon scattering results from multiple interactions throughout the volume
 - Assigning the whole scattering to a single point inherently leads to underestimating the X_0
 - Can slightly improve by weighting muon predictions by their X₀ uncertainty
 - Can also allow muons to predict in multiple voxels according to their PoCA uncertainty

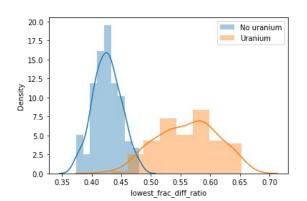


Block of lead $(X_0 = 0.005612m)$ Surrounded by beryllium $(X_0 = 0.3528 \text{m})$ **Predictions highly** biased to underestimate X₀ Lead block clearly visible but high z uncertainty in scatter location causes 'ghosting' above and below

VOLUME INFERENCE: SUMMARY STATISTIC

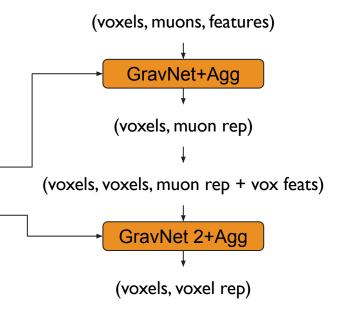
- In some cases, we don't care about predicting voxel X₀ values, but instead determining some higher-level property of the volume
 - E.g. is there uranium located anywhere in the volume?
- For this we can try to construct a summary statistic based on the X₀ predictions
- Statistics must be fully differentiable
 - Ideally, should also be invariant to scale X0 predictions, to mitigate PoCA bias

- E.g. for a uranium-block search, compare the mean of the lowest estimated to X_n voxels to the mean of the rest
 - No block => small difference
 - Block => bimodal X_0 distribution => large difference



VOLUME INFERENCE: GNN

- Can use a deep learning approach
- Consider two-stage graph:
 - Each voxel has a graph built from muons
 - GNN+aggregation learns a representation of the muons specific to each voxel, by sharing features between muons
 - Each volume has a graph built from voxels
 - Second GNN+aggregation learns a representation of the voxels specific to each voxel, by sharing muon-representations between voxels.



VOLUME INFERENCE: GNN

- At this point, we have a representation per voxel.
- We can transform these into X₀
 predictions (class/value) with a DNN
- We can easily aggregate over the voxels to produce a volume representation.
 - This can then be further transformed into the appropriate prediction shape
- Further details in my <u>IML talk</u>

