
https://root.cern

ROOT
Data Analysis Framework

SOFIE: C++ Code Generation for Fast Deep
Learning Inference

Sitong An, Ahmat Hamdan, Lorenzo Moneta, Sanjiban Sengupta, Federico Sossai,
Aaradhya Saxena, Neel Shah
presented by Enrico Guiraud

https://root.cern

Motivation

▶ ML ecosystem focus mainly on training the models
▶ Deployment of models (inference) is often neglected
▶ Tensorflow/PyTorch have functionality for inference

▶ can run only for their own models
▶ usage in C++ environment is cumbersome
▶ requires heavy dependence

▶ A new standard exists for describing deep learning models
▶ ONNX (“Open Neural Network Exchange”)

▶ ONNXRuntime: a new efficient inference engine based by Microsoft
▶ large dependency
▶ can be difficult to integrate in HEP ecosystem

▶ control of threads, used libraries, etc..
▶ not optimised for single event evaluation

2

Idea for Inference Code Generation

▶ An inference engine that…

● Input: trained ONNX model file
■ Common standard for ML models
■ Supported by PyTorch natively
■ Converters available for Tensorflow and Keras

● Output: Generated C++ code that hard-codes the inference function
■ Easily invokable directly from other C++ project (plug-and-use)
■ Minimal dependency (on BLAS only)
■ Can be compiled on the fly using Cling JIT

▶ SOFIE : System for Optimised Fast Inference code Emit
3

Parsing input models

▶ Parser: from ONNX to SOFIE::RModel class
▶ RModel: intermediate model representation in memory

using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("model.onnx");

▶ Parser exists also for (with more limited support)
▶ Native PyTorch files (model.pt files)

SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");

▶ Native Keras files (model.h5 files)
 SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");

4

Parsing input models

▶ Parser: from ONNX to SOFIE::RModel class
▶ RModel: intermediate model representation in memory

using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("Model.onnx");

▶ Parser exists also for (with more limited support)
▶ Native PyTorch files (model.pt files)

SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");

▶ Native Keras files (model.h5 files)
 SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");

5

Code Generation

▶ Code Generation: from RModel to a C++ file (Model.hxx)  
and a weight file (Model.dat)

// generate text code internally (with some options)
model.Generate();
// write output header file and data weight file
model.OutputGenerated();

▶ Generated code has minimal dependency
▶ only linear algebra library (BLAS)
▶ no dependency on ROOT libraries
▶ can be easily integrated in your project

6

namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
 if (filename.empty()) filename = "Linear_event.dat";
 std::ifstream f;
 f.open(filename);
 // read weight data file
 …………………..
}
std::vector<float> infer(float* tensor_input1){

C++ code

▶ SOFIE generated code can be easily used in compiled C++ code
#include “Model.hxx”
// create session class
TMVA_SOFIE_Model::Session s();
//—- event loop
…….
{
 // evaluate model: input is an array of type float *

std::vector<float> result = s.infer(input);
}

▶ Code can be compiled using ROOT Cling and used in C++ interpreter or Python
import ROOT
compile generate SOFIE code using ROOT interpreter
ROOT.gInterpreter.Declare(‘#include “Model.hxx”’)
create session class
s = ROOT.TMVA_SOFIE_Model.Session()
#—- event loop
…….
 # evaluate the model , input can be a numpy array of type float32
 result = s.infer(input)

Using the Generated code

7
See full Example tutorial code

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

RDF Integration

▶ SOFIE Inference code provides a Session class with this signature:

vector<float> ModelName::Session::infer(float* input);

▶ RDF Interface requires a functor with this signature:
T FunctorObj::operator()(T x1, T x2, T x3,….);

▶ We have developed a generic functor adapting SOFIE signature to the RDF one
▶ Support for multi-thread evaluation, using RDF slots 

 
auto h1 = df.DefineSlot("DNN_Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),  
{"m_jj", "m_jjj", “m_lv", “m_jlv","m_bb","m_wbb","m_wwbb"}).  
Histo1D("DNN_Value");

8See full Example tutorial code in C++ or Python

https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8py.html

ONNX Supported Operators

9

Perceptron: Gemm Implemented and integrated (ROOT 6.26)

Activations: Relu, Seul, Sigmoid, Softmax, LeakyRelu Implemented and integrated

Convolution (1D, 2D and 3D) Implemented and integrated

Recurrent: RNN, GRU, LSTM Implemented and integrated

BatchNormalization Implemented and integrated

Pooling: MaxPool, AveragePool, GlobalAverage Implemented and integrated

 Layer operations: Add, Sum, Mul, Div, Reshape, Flatten,
Transpose, Squeeze, Unsqueeze, Slice, Concat, Identity Implemented and integrated

InstanceNorm Implemented but to be integrated (PR #8885)

Deconvolution, Reduce operators (for generic layer
normalisation), Gather (for embedding)

Planned for next release

??? Depending on user needs

Benchmark: Dense Model

10

10 Dense 
 layers

Benchmark with RDF
▶ Test on a Deep Neural Network (from TMVA_Higgs_Classification.C tutorial)  

5 fully connected layers of 200 units
▶ Run on dataset of 5M events:

▶ Single Thread, but can run Multi-Threads

11
DNN Model(5 layers of 200)0

50

100

150

200

250

300

310×

Pr
oc

es
se

d
Ev

en
ts

/s
ec SOFIE

ONNXRuntime
LWTNN

Ubuntu 20.04 Intel 5000MHz

La
rg

er
 =

 B
et

te
r

https://root.cern.ch/doc/master/TMVA__Higgs__Classification_8C.html

Benchmark: All Models (on Linux PC)

▶ Test event performance of SOFIE vs ONNXRuntime

12

Sm
al

le
r =

 B
et

te
r

DNN FastSim CNN 2D CNN 3D Resnet RNN LSTM RNN GRU CMS DDB
Deep Learning Models

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ti
m

e
re

la
tiv

e
to

 O
N

N
XR

un
tim

e

SOFIE

ONNXRuntime

Ubuntu 20.04 Intel 5000MHz (Batch Size = 1)
(using batch size = 1)

Future Plans

▶ Implement some missing operators:
▶ Deconvolution, etc..
▶ more depending on user needs and feedback

▶ Implement same model optimisations:
▶ layer fusions, quantisations,….

▶ we are in contact with hls4ml project for collaborating
▶ Generate code for different architectures (e.g GPU)

▶ Investigate extensions to parse and generate code for graph models
(GNN)
▶ not supported by ONNX, will parse directly saved models

13

Summary

▶ First release of SOFIE, fast and easy to use inference
engine for ML models, is available in ROOT 6.26

▶ Good performance compared to existing package
(ONNXRuntime) and LWTNN
▶ further optimisations are still possible

▶ Integrated with other ROOT tools to evaluate models in user
analysis: RDataFrame

▶ Future developments will be done according to user needs
and the received feedback!

14

Example Notebooks and Tutorials

▶ Example notebooks on using SOFIE:
▶ https://github.com/lmoneta/tmva-tutorial/tree/master/sofie

▶ Tutorials are also available in the tutorial/tmva directory

▶ Link to SOFIE code in current ROOT master in GitHub

▶ Link to benchmarks in rootbench 

15

The presenter gratefully acknowledges the support of the Marie Skłodowska-Curie Innovative Training
Network Fellowship of the European Commission Horizon 2020 Programme, under contract number
765710 INSIGHTS.

https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html
https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/root-project/rootbench/pull/239

Conclusion

▶ Link to SOFIE in current ROOT master
▶ Link to SOFIE notebooks
▶ Link to benchmark in rootbench (PR #239)
▶ Link to previous benchmark sample code  

 
 
 
 
 

16

The presenter gratefully acknowledges the support of the Marie Skłodowska-Curie Innovative Training
Network Fellowship of the European Commission Horizon 2020 Programme, under contract number
765710 INSIGHTS.

https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://github.com/root-project/rootbench/pull/239
https://github.com/sitongan/sofie_benchmarking

