
Shared I/O Developments for
Run 3 in the ATLAS Experiment

Alaettin Serhan Mete, Peter Van Gemmeren
Argonne National Laboratory (obo the ATLAS Collaboration)

International Conference on High Energy Physics
6-13 July 2022

Athena in a Nutshell
● Athena is the main ATLAS software framework (open-source)
○ Based on the Gaudi framework, a common LHCb and ATLAS effort (also open-source)

● It consists of about 4 (1.5) million lines of C++ (python) code
○ CMake is used for building, python for configuration, and C++ for algorithms/core framework

● It has been in use since the early days of the ATLAS experiment
○ Each job consists of 4 main steps: Configuration, Initialization, Event-loop, and Finalization

● Today Athena supports 4 different modes of operation:
○ Serial Athena : All relevant code is executed on a single core

■ Original mode, used throughout Run 1, still used for some workflows (& debugging) today

○ AthenaMP : The event-loop is distributed across many cores via processes
■ Introduced in Run 2 to reduce memory and improve parallelism

○ AthenaMT : The event-loop is distributed across many cores via threads
■ Introduced in Run 3 to further reduce memory and achieve intra-event parallelism

○ AthenaMP/MT : The event-loop is distributed across many cores via processes/threads
■ Currently an experimental mode that targets most optimal throughput/memory scaling

2

https://gitlab.cern.ch/atlas/athena/
https://gitlab.cern.ch/lhcb/Gaudi

AthenaMP: Multi-process Athena
● Takes advantage of Linux fork and copy-on-write mechanisms
○ Allows sharing of memory pages between worker processes with little-to-no code change

● Workers process a unique set of events & produce unique outputs
○ These output files need to be merged at a subsequent step introducing sizable overhead

3

Paolo Calafiura et al 2015 J. Phys.: Conf. Ser. 664 072050

https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072050

core-4

SharedWriter
Events: [0, 1, …]> Merged

Outputfin

Shared I/O: Handling Multi-process I/O

4

● Data shared through Shared Memory
● Serialization/compression by SharedWriter
● Also summarizes in-file MetaData

● Shared I/O was designed for AthenaMP
○ ShareWriter merges output files “on-the-fly”

● Heavily/successfully used in Run 2
○ Especially in I/O intensive workflows
○ Not only improves throughput but also job success rates

■ Reduces wall-time by 20-30% in derivation prod.
■ No additional (merging) jobs

● Room for improvement:
○ Throughput scaling not optimal beyond 8-10 workers
○ Can also throttle when writing multiple streams, e.g. >2-3

core-4

SharedWriter
Events: [0, 1, …]> Merged

Outputfin

Shared I/O: Handling Multi-process I/O in Run 3

5

● Data shared through Shared Memory
● Serialization/compression by Worker
● SharedWriter summarizes in-file MetaData

● Redesigned Shared I/O for Run-3
○ SharedWriter still merges output files “on-the-fly”
○ Each worker has in-memory outputs: TMemFile
■ Serialization/compression on the worker

○ Files are merged using a custom ParallelFileMerger
■ Based on a server/client network protocol

○ SharedWriter de-serializes/summarizes MetaData

● Improved performance:
○ Trade-off memory for parallelism
■ Memory is similar to vanilla AthenaMP

TMemFile

TMemFile

TMemFile

TMemFile

https://root.cern/doc/master/classTMemFile.html
https://root.cern/doc/master/parallelMergeServer_8C.html

Benchmarks: A Global Overview

6

● Machine and Job:
○ AMD EPYC 7302 16-Core Processor @ 3 GHz w/ 252 GB memory
○ Producing DAOD_PHYS + DAOD_PHYSLITE w/ 25000 reconstructed data18 events

■ DerivedAnalysisObjectData (DAOD) is the data format used by the physics analyses
■ PHYS(LITE) formats include all input events w/ an event-size of O(10 KB/event)

of Cores
Events/Wall-time [1/s] Memory/Core [GB]

Legacy SharedWriter New SharedWriter Difference [%] Legacy SharedWriter New SharedWriter Difference [%]

4 4.9 6.0 +21 1.94 2.10 +9

8 6.7 11.4 +70 1.67 1.88 +13

16 6.7 21.2 +216 1.45 1.81 +25

● Executive Summary:
○ New SharedWriter has a much better throughput scaling (+70% @ 8 worker processes)
○ The increased memory usage still stays below the grid resource limits (2 GB/core)

Benchmarks: Closer Look at the 8-worker Job

7

Le
ga

cy
 S

ha
re

dW
ri

te
r N

ew
 SharedW

riter

● Legacy SharedWriter limitations:
○ In Run 3 jobs are more I/O intensive due to new analysis model

■ Producing multiple inclusive formats (PHYS/LITE) in a single job
○ A single instance can’t keep up with large # of workers/formats
○ Effective # of parallel workers are reduced, hurting throughput

● New SharedWriter improvements:
○ Workers are practically independent: Ideal scaling
○ Work is equally distributed, optimizing throughput
○ No resource (CPU) usage overhead, helps the GRID

*”Legacy (Run 2)” shows a typical use case in Run 2

Ongoing & Future Developments
● Delayed OS-fork of workers to maximize the shared memory
○ Let the main process execute N events (typically 1) before launching the worker processes
○ This is proven to significantly improve the memory profile of the relevant jobs
○ The new SharedWriter support for this mode is currently being validated

● Taking advantage of SharedWriter to help I/O intensive MT jobs
○ The MP/MT hybrid mode can allow us to enjoy the best of both worlds

■ Running N threads in M processes to achieve NxM parallelism
■ This approach has the potential to achieve:

● Better memory scaling than MP-alone
● Better throughput scaling than MT-alone

○ In I/O intensive workflows, SharedWriter can improve with the throughput scaling w.r.t cores

● Overall there are a number of such improvement in the pipeline
○ Today is more interesting than yesterday but tomorrow will be even more interesting!

8

Conclusions
● The Shared I/O infrastructure has been successfully used in Run 2!
● Various improvements are made ahead of Run 3:
○ The new analysis model with common inclusive formats requires improved parallelization
○ Improving the throughput scalability also allows us to take better advantage of HPCs
○ At 8 processes, events/second is improved by 70%, at 16 processes by >200%!
○ The legacy SharedWiter is still a valuable asset for less I/O intensive (more memory limited) jobs

● A number of new improvements are already in the pipeline:
○ Supporting late OS-fork etc.

● Shared I/O can also help w/ certain MT applications:
○ Especially those workflows that are I/O intensive/limited
○ Primarily taking advantage of Athena’s rather unique MP/MT hybrid mode of operation

● ATLAS will be using the Shared I/O infrastructure for years to come!
○ We look forward to all the challenges and fun ahead…

9

Thank you for your attention!

