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Introduction

• The LHC’s future is one of a dramatic 
increase in luminosity rather than energy

➡ Large amount of collision data with 

complex events expected in future LHC 
running
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• We want to make full use of this data by 
incorporating and correlating as much of 
the available information within each event 
as possible

❖ Methods that employ machine learning 

are widely used in this context

❖ Alternative: Matrix Element Method



Matrix Element Method (MEM)
Ab initio calculation of an approximate probability density function 𝓟𝞷 (𝙭|𝞪) for an event with 
observed final-state particle momenta 𝙭 to be due to a process 𝞷 with theory parameters 𝞪
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𝓟𝞷 (𝙭|𝞪) can be used in a number of ways to search for new phenomena at particle colliders

}
Dynamics from QFT→ Correlations from physics

Sample Likelihood

(e.g. 𝞪 measurements via max. likelihood)


Neyman-Pearson Discriminant 
(e.g. process search, hypothesis test)
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For the purpose of this talk: 𝓟𝞷 (𝙭|𝞪) is a function that can be computed numerically and 
provides physics-driven information useful for measurements, hypothesis tests and searches



Matrix Element Method: Pros and Cons
• The ME Method has been used over 

the years for public physics results 
from collider experiments


• The ME Method has several 
advantages over ML-based methods

❖ Does not require training

❖ Incorporates all available kinematic 

information, including correlations

❖ Has a clear physical meaning of transition 

probabilities in QFT

• The main limitation of the ME method: computationally intensive 
❖ E.g. Calculating 𝓟𝞷 (𝙭|𝞪) for  involves 

high-dimensional integration and can take minutes per event 
pp → tt̄H → W+bW−b̄bb̄ → ℓν + 6 jets

https://arxiv.org/abs/1511.05980

https://arxiv.org/abs/1511.05980


MEM in the Machine Learning (ML) Era
• It was proposed in 2017 by MN, et al. in [1] (cf. [2], [3], [4]) to use ML 

methods to approximate MEM calculations so they are sustainable

Analysis Development
DeepMEM models for signal 
and background processes

Final Pass

Full MEM 
calculations

Optimization, systematics, etc

Training, optimization, validation
Model DevelopmentSimulated events (𝙭)

Probability densities 𝓟𝞷 (𝙭|𝞪)
Treat as regression problem: Learn map: 𝙭  𝓟𝞷 (𝙭|𝞪)

MEM Model Development

Possible Usage in Analysis

DeepMEM models 
for each process of 

interest (𝞷, 𝞪)

model

https://hepsoftwarefoundation.org/cwp/hsf-cwp-018-CWP_sustainable_matrix_element_method.pdf
https://www.ideals.illinois.edu/items/89280
https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF3_CompF5-EF0_EF0_Mark_Neubauer-121.pdf
https://arxiv.org/abs/2008.10949


Current ME Method Calculation Pipeline
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ROOT TTrees

MoMEMta 
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Dockerized  
Container
Data Flow

Parallel Time Serial Time

Entire Pipeline 45 Minutes 150 Hours

MoMEMta 34 Minutes 113 Hours

Particle level/interaction 
simulation

Detector level 
simulation

Event selection

Full MEM calculations
SCAILFIN

For 300k events of  p + p  𝑙 + 𝑙 + 𝑋

https://scailfin.github.io/


DeepMEM Objectives
• Address the challenges of MEM while retaining the benefits:


• Retain the transparency and accuracy of MEM calculations 
• Reduce the time required by MEM calculations 

• Deep Neural Networks: arbitrary function approximators that 
scale well with data 

• Replace the calculations performed by MoMEMta with a deep 
neural network trained using MoMEMta outputs 

• Final calculations used in an analysis would be performed using 
the full pipeline for accuracy – Using DeepMEM expedites 
calculations during research and development



MEM Pipeline using DNN Approximations

MadGraph5 
Pythia 

LHAPDF 
Python3

Delphes 
ROOT 
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Trained 
using

Inference Time Training Time†

DeepMEM 2 Minutes 18 Mins*

For 300k events of  p + p  𝑙 + 𝑙 + 𝑋

* Trained for 100 epochs † Training needs to be done only once for a particular final state



Data and Selection Description
We consider the simple Drell-Yan Process with lepton pair final state: 

 

• Parsing the ROOT TTrees produced after event selection, we use 
the 4-momentum of the final state particles and MET 

• Mass is a very good discriminant, and we keep the neural network 
blind to the mass by excluding it (following the approach of [4])

p + p  𝑙 + 𝑙 + 𝑋

• Inputs: 
• Pt, Eta, Phi components of leptons and jet(s) 
• Magnitude and Phi of the MET  
• 14 input parameters

• Outputs:  
• Log transformed MoMEMta weight values

• Final Dataset contains ~300K events

https://arxiv.org/abs/2008.10949


Multiprocessing DataLoader
• PyTorch In-built dataloader is built for image/computer vision 

data – loads individual samples based on user mappings 
• This is inefficient for contiguous, tabular data 

• No out-of-the-box solution that can address the issues 
• Tabular data is loaded faster in chunks 
• The dataset might be too large to fit in memory at once 

• Data Managing and Loading Module: 
1. Parse ROOT TTrees based on user-input 
2. Use Python Multiprocessing library constructs to store a “cache” of data 
3. Spawn processes using PyTorch to load data from cache 
4. Load the next chunk of data and replace the “cache” 

• We get significantly faster data loading 
   in comparison to the in-built dataloader

Load Time
In-Built 506 s
Our Implementation 55 s

Load times are for 100 epochs of 
the MoMEMta test dataset 



Network Architecture

• We use a Fully-Connected Deep Neural 
Network with 5 deep layers of 200 Nodes each 

• We split the data 8:1:1 for training, validation 
and testing purposes 

• The output is the approximate transformed 
MoMEMta weights for N = ~270k training and 
validation events 

• The network is trained for 100 epochs

DNN A: 5 Deep and fully-connected Layers

Input: (N, Np = 14)

Output: (N, 1)



Results using DNN

• Testing on unseen data gives us a 
good visual fit between DeepMEM 
predictions and the test data 

• Ratio =  

• Mean Absolute % Error = 1.6% 
      
     where 

• However, we can see that the 
network cannot generalize well 
on bins that do not contain a lot 
of events

# 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛
# 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛

Results from DNN A: 5 Deep and fully-connected Layers



Residual Networks
Residual Networks are neural network architectures that incorporate 
skip connections in the network architecture 

Ease training for deep networks by providing shortcuts for 
backpropagation, while gaining accuracy from the depth of the 
network (see ref [5]) 

ResNets have empirically shown to 
have better results for aggressively  
deep networks (ILSVRC 2015) [5] 

Why do ResNets work? 
• They address the gradient vanishing phenomenon 
• Smaller loss values can successfully transmit through a deep network and update 

the earlier layers

Image credit & Ref: [5] K. He, X. Zhang, S. Ren, J.Sun, Deep Residual Learning for Image Recognition

https://arxiv.org/abs/1512.03385?context=cs
https://arxiv.org/abs/1512.03385?context=cs
https://arxiv.org/abs/1512.03385?context=cs


Residual Network Architecture

ResNet A: 5 Deep Layers followed by a 
skip connection

ResNet B: 6 Deep Layers followed by a 
skip connection

We include a skip 
connection into the original 
DNN A while retaining Depth 

(This Network is less 
complex than DNN A)

We include a skip 
connection into the original 
DNN A by adding an extra 

layer to the depth 

(This Network is more 
complex and deeper than 

DNN A)



Results using Residual Network A
• We see much better 

generalization using this 
architecture 

• Mean Absolute % Error = 1.4% 

• We argue that adding a 
skip connection improved 
the results since ResNet A 
was less complex than 
DNN A

Results from ResNet A: 5 Deep Layers followed by a skip connection



Results using Residual Network B
• We see even better 

generalization using this 
architecture 

• Mean Absolute % Error = 1.2% 

• A more complex network 
with a skip connection 
gives us slightly better 
results by leveraging its 
depth

Results from ResNet B: 6 Deep Layers followed by a skip connection



Generalization in Kinematic Phase Space
Check ResNet B modeling on different kinematic subsets of the data 
(no retraining!)

Good modeling retained  robust against leading lepton pt cut 
Similar results for subsets through jet pt thresholds

pT(leading lepton) > 30 GeV pT(leading lepton) > 40 GeV pT(leading lepton) > 50 GeV



Summary and Future Work
• Implemented ML methods to approximate MEM calculations and 

demonstrated the viability of this approach on a simple DY process 
• Implemented a versatile and performant Multiprocessing Dataloader  
• Implemented Residual Network architecture for better generalization 
• Checked that the model is robust against kinematic selections  

❖A next step in this study is to go beyond the simple DY process to 
other processes with more complex decays and final state particles 

❖Explore other ML architectures which include physics constraints  
❖Generate simulated data and models adhering to FAIR principles 

❖ See talk by Avik Roy (UIUC) in this session 

DeepMEM is an open-source python library distributed on PyPI 
that can be used on similar datasets: python -m pip install deepmem

https://agenda.infn.it/event/28874/contributions/169888/
https://github.com/mihirkatare/DeepMEM
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