Deep Learning for the Matrix Element Method

Mark Neubauer
University of Illinois at Urbana-Champaign

International Conference on High Energy Physics (ICHEP)
July 9, 2022 in Bologna, Italy
• The LHC’s future is one of a dramatic increase in luminosity rather than energy
 ➡ Large amount of collision data with complex events expected in future LHC running

• We want to make full use of this data by incorporating and correlating as much of the available information within each event as possible
 ❖ Methods that employ machine learning are widely used in this context
 ❖ Alternative: *Matrix Element Method*
Matrix Element Method (MEM)

Ab initio calculation of an approximate probability density function $\mathcal{P}_\xi(x|\alpha)$ for an event with observed final-state particle momenta x to be due to a process ξ with theory parameters α.

$$
\mathcal{P}_\xi(x|\alpha) = \frac{1}{\sigma_{\text{fiducial}}(\alpha)} \int d\Phi(y_{\text{final}}) \, dx_1 \, dx_2 \, \frac{f(x_1)f(x_2)}{2sx_1x_2} \, |\mathcal{M}_\xi(y|\alpha)|^2 \, \delta^4(y_{\text{initial}} - y_{\text{final}}) \, W(x, y)
$$

Dynamics from QFT → Correlations from physics

$\mathcal{P}_\xi(x|\alpha)$ can be used in a number of ways to search for new phenomena at particle colliders.

Sample Likelihood
(e.g. α measurements via max. likelihood)

$$
\mathcal{L}(\alpha) = \prod_i \sum_k f_k \mathcal{P}_{\xi_k}(x_i|\alpha)
$$

Neyman-Pearson Discriminant
(e.g. process search, hypothesis test)

$$
p(x|S) = \frac{\sum_i \beta_{S_i} \mathcal{P}_{S_i}(x|\alpha_{S_i})}{\sum_i \beta_{S_i} \mathcal{P}(x|\alpha_{S_i}) + \sum_j \beta_{B_j} \mathcal{P}(x|\alpha_{B_j})}
$$

For the purpose of this talk: $\mathcal{P}_\xi(x|\alpha)$ is a function that can be computed numerically and provides physics-driven information useful for measurements, hypothesis tests and searches.
Matrix Element Method: Pros and Cons

- The ME Method has been used over the years for public physics results from collider experiments

- The ME Method has several advantages over ML-based methods
 - Does not require training
 - Incorporates all available kinematic information, including correlations
 - Has a clear physical meaning of transition probabilities in QFT

- The main limitation of the ME method: **computationally intensive**
 - E.g. Calculating $R_\xi(x|\alpha)$ for $pp \rightarrow t\bar{t}H \rightarrow W^+bW^-b\bar{b}\bar{b} \rightarrow \ell\nu + 6$ jets involves high-dimensional integration and can take minutes per event

https://arxiv.org/abs/1511.05980
MEM in the Machine Learning (ML) Era

- It was proposed in 2017 by MN, et al. in [1] (cf. [2], [3], [4]) to use ML methods to approximate MEM calculations so they are sustainable.

MEM Model Development

- Simulated events (x)
- Probability densities $P_\xi(x|\alpha)$
- **Model Development**
 - Training, optimization, validation
 - Treat as regression problem: Learn map: $x \rightarrow P_\xi(x|\alpha)$
- **DeepMEM models** for each process of interest (ξ, α)

Possible Usage in Analysis

- **Analysis Development**
 - **DeepMEM models** for signal and background processes
 - Optimization, systematics, etc
- **Final Pass**
 - Full MEM calculations
Current ME Method Calculation Pipeline

Data Flow

- **LHE (MadGraph5)**
- **HEPMC (Pythia)**
- **Detector level simulation**
 - **Delphes**
 - **ROOT**
 - **Python3**
- **Event selection**
- **Delphes/ROOT files**
- **ROOT TTrees**
- **Full MEM calculations**
- **MoMEMta**
- **ROOT TTrees**
- **Python3**
- **Weights**

Parallel Time
- **Entire Pipeline**: 45 Minutes (200 workers)
- **MoMEMta**: 34 Minutes (200 workers)

Serial Time
- **Entire Pipeline**: 150 Hours
- **MoMEMta**: 113 Hours

For 300k events of $p + p \rightarrow l + \bar{l} + X$

<table>
<thead>
<tr>
<th></th>
<th>Parallel Time</th>
<th>Serial Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire Pipeline</td>
<td>45 Minutes</td>
<td>150 Hours</td>
</tr>
<tr>
<td>MoMEMta</td>
<td>34 Minutes</td>
<td>113 Hours</td>
</tr>
</tbody>
</table>

Dockerized Container Data Flow
DeepMEM Objectives

• Address the challenges of MEM while retaining the benefits:
 • Retain the transparency and accuracy of MEM calculations
 • Reduce the time required by MEM calculations

• **Deep Neural Networks**: arbitrary function approximators that scale well with data

• Replace the calculations performed by MoMEMta with a deep neural network trained using MoMEMta outputs

• Final calculations used in an analysis would be performed using the full pipeline for accuracy – Using DeepMEM expedites calculations during research and development
MEM Pipeline using DNN Approximations

Data Flow

- LHE (MadGraph5)
- HEPMC (Pythia)
- MadGraph5
- Pythia
- LHAPDF
- Python3
- Delphes
- ROOT
- Python3
- Delphes
- ROOT
- Python3
- MoMEMta
- ROOT
- Python3
- MoMEMta
- Weights

Parallel Time & Serial Time

<table>
<thead>
<tr>
<th></th>
<th>Parallel Time</th>
<th>Serial Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Pipeline</td>
<td>45 Minutes</td>
<td>150 Hours</td>
</tr>
<tr>
<td>MoMEMta</td>
<td>34 Minutes</td>
<td>113 Hours</td>
</tr>
</tbody>
</table>

Inference Time & Training Time†

<table>
<thead>
<tr>
<th></th>
<th>Inference Time</th>
<th>Training Time†</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeepMEM</td>
<td>2 Minutes</td>
<td>18 Mins*</td>
</tr>
</tbody>
</table>

Trained for 100 epochs †Training needs to be done only once for a particular final state
We consider the simple Drell-Yan Process with lepton pair final state:
\[p + p \rightarrow l + \bar{l} + X \]

- Parsing the ROOT TTrees produced after event selection, we use the 4-momentum of the final state particles and MET
- Mass is a very good discriminant, and we keep the neural network blind to the mass by excluding it (following the approach of [4])

Inputs:
- \(P_t, \) Eta, Phi components of leptons and jet(s)
- Magnitude and Phi of the MET
- 14 input parameters

Outputs:
- Log transformed MoMEMta weight values

Final Dataset contains ~300K events
Multiprocessing DataLoader

- PyTorch In-built dataloader is built for image/computer vision data – loads individual samples based on user mappings
 - This is inefficient for contiguous, tabular data

- No out-of-the-box solution that can address the issues
 - Tabular data is loaded faster in chunks
 - The dataset might be too large to fit in memory at once

- Data Managing and Loading Module:
 1. Parse ROOT TTrees based on user-input
 2. Use Python Multiprocessing library constructs to store a “cache” of data
 3. Spawn processes using PyTorch to load data from cache
 4. Load the next chunk of data and replace the “cache”

- We get significantly faster data loading in comparison to the in-built dataloader

Load times are for 100 epochs of the MoMEMta test dataset

<table>
<thead>
<tr>
<th></th>
<th>Load Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Built</td>
<td>506 s</td>
</tr>
<tr>
<td>Our Implementation</td>
<td>55 s</td>
</tr>
</tbody>
</table>
Network Architecture

- We use a Fully-Connected Deep Neural Network with 5 deep layers of 200 Nodes each
- We split the data 8:1:1 for training, validation and testing purposes
- The output is the approximate transformed MoMEMtta weights for $N = \sim 270k$ training and validation events
- The network is trained for 100 epochs

DNN A: 5 Deep and fully-connected Layers
Results using DNN

- Testing on **unseen data** gives us a good visual fit between DeepMEM predictions and the test data

\[
\text{Ratio} = \frac{\# \text{ of predicted events in bin}}{\# \text{ of actual events in bin}}
\]

- Mean Absolute % Error = **1.6%**

\[
\text{MAPE} = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|
\]

- However, we can see that the network cannot generalize well on bins that do not contain a lot of events

Results from DNN A: 5 Deep and fully-connected Layers
Residual Networks

Residual Networks are neural network architectures that incorporate **skip connections** in the network architecture.

Ease training for deep networks by **providing shortcuts for backpropagation**, while gaining accuracy from the depth of the network (see ref [5]).

ResNets have empirically shown to have better results for aggressively deep networks (ILSVRC 2015) [5].

Why do ResNets work?

- They address the gradient vanishing phenomenon.
- Smaller loss values can successfully transmit through a deep network and update the earlier layers.

Image credit & Ref: [5] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition
Residual Network Architecture

ResNet A: 5 Deep Layers followed by a skip connection

Weight Layer 1: 200 Nodes

Weight Layer 2: 200 Nodes

Weight Layer 5: N_p Nodes

Weight Layer 6: 1 Node

We include a skip connection into the original DNN A while retaining Depth

(This Network is less complex than DNN A)

ResNet B: 6 Deep Layers followed by a skip connection

Weight Layer 1: 200 Nodes

Weight Layer 2: 200 Nodes

Weight Layer 6: N_p Nodes

Weight Layer 7: 1 Node

We include a skip connection into the original DNN A by adding an extra layer to the depth

(This Network is more complex and deeper than DNN A)
Results using Residual Network A

- We see much better generalization using this architecture
- Mean Absolute % Error = 1.4%
- We argue that adding a skip connection improved the results since ResNet A was less complex than DNN A

Results from ResNet A: 5 Deep Layers followed by a skip connection
Results using Residual Network B

- We see even better generalization using this architecture
- Mean Absolute % Error = 1.2%
- A more complex network with a skip connection gives us slightly better results by leveraging its depth

Results from ResNet B: 6 Deep Layers followed by a skip connection
Generalization in Kinematic Phase Space

Check ResNet B modeling on different kinematic subsets of the data (no retraining!)

Good modeling retained → robust against leading lepton pt cut
Similar results for subsets through jet pt thresholds
Summary and Future Work

- Implemented ML methods to approximate MEM calculations and demonstrated the viability of this approach on a simple DY process
- Implemented a versatile and performant Multiprocessing Dataloader
- Implemented Residual Network architecture for better generalization
- Checked that the model is robust against kinematic selections

❖ A next step in this study is to go beyond the simple DY process to other processes with more complex decays and final state particles
❖ Explore other ML architectures which include physics constraints
❖ Generate simulated data and models adhering to FAIR principles
 ❖ See talk by Avik Roy (UIUC) in this session

DeepMEM is an open-source python library distributed on PyPI that can be used on similar datasets: python -m pip install deepmem
Acknowledgments

• This work was performed by Mihir Katare and Matthew Feickert, with guidance from Avik Roy

• This work was supported through grants from the National Science Foundation: IRIS-HEP (OAC-1836650) and SCAILFIN (OAC-1841456)