
Deep Learning for the
Matrix Element Method

Internat iona l Conference on
High Energy Physics (ICHEP)

J u l y 9 , 2 0 2 2 i n B o l o g n a , I t a l y

Mark Neubauer
Univers i ty o f I l l ino is a t Urbana-Champaign

SCAILFIN

https://scailfin.github.io/

Introduction

• The LHC’s future is one of a dramatic
increase in luminosity rather than energy

➡ Large amount of collision data with

complex events expected in future LHC
running

2

• We want to make full use of this data by
incorporating and correlating as much of
the available information within each event
as possible

❖ Methods that employ machine learning

are widely used in this context

❖ Alternative: Matrix Element Method

Matrix Element Method (MEM)
Ab initio calculation of an approximate probability density function 𝓟𝞷 (𝙭|𝞪) for an event with
observed final-state particle momenta 𝙭 to be due to a process 𝞷 with theory parameters 𝞪

3

𝒫ξ(x |α) =
1

σfiducial
ξ (α) ∫ dΦ(yfinal) dx1 dx2

f(x1)f(x2)
2sx1x2

|ℳξ(y |α) |2 δ4(yinitial − yfinal) W(x, y)

𝓟𝞷 (𝙭|𝞪) can be used in a number of ways to search for new phenomena at particle colliders

}
Dynamics from QFT→ Correlations from physics

Sample Likelihood

(e.g. 𝞪 measurements via max. likelihood)

Neyman-Pearson Discriminant
(e.g. process search, hypothesis test)

ℒ(α) = ∏
i

∑
k

fk𝒫ξk
(xi |α) p(x |S) =

∑
i

βSi
𝒫Si

(x |αSi
)

∑
i

βSi
𝒫(x |αSi

) + ∑
j

βBj
𝒫(x |αBj

)

For the purpose of this talk: 𝓟𝞷 (𝙭|𝞪) is a function that can be computed numerically and
provides physics-driven information useful for measurements, hypothesis tests and searches

Matrix Element Method: Pros and Cons
• The ME Method has been used over

the years for public physics results
from collider experiments

• The ME Method has several
advantages over ML-based methods

❖ Does not require training

❖ Incorporates all available kinematic

information, including correlations

❖ Has a clear physical meaning of transition

probabilities in QFT

• The main limitation of the ME method: computationally intensive
❖ E.g. Calculating 𝓟𝞷 (𝙭|𝞪) for involves

high-dimensional integration and can take minutes per event
pp → tt̄H → W+bW−b̄bb̄ → ℓν + 6 jets

https://arxiv.org/abs/1511.05980

https://arxiv.org/abs/1511.05980

MEM in the Machine Learning (ML) Era
• It was proposed in 2017 by MN, et al. in [1] (cf. [2], [3], [4]) to use ML

methods to approximate MEM calculations so they are sustainable

Analysis Development
DeepMEM models for signal
and background processes

Final Pass

Full MEM
calculations

Optimization, systematics, etc

Training, optimization, validation
Model DevelopmentSimulated events (𝙭)

Probability densities 𝓟𝞷 (𝙭|𝞪)
Treat as regression problem: Learn map: 𝙭 𝓟𝞷 (𝙭|𝞪)

MEM Model Development

Possible Usage in Analysis

DeepMEM models
for each process of

interest (𝞷, 𝞪)

model

https://hepsoftwarefoundation.org/cwp/hsf-cwp-018-CWP_sustainable_matrix_element_method.pdf
https://www.ideals.illinois.edu/items/89280
https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF3_CompF5-EF0_EF0_Mark_Neubauer-121.pdf
https://arxiv.org/abs/2008.10949

Current ME Method Calculation Pipeline

MadGraph5
Pythia

LHAPDF
Python3

Delphes
ROOT

Python3

Delphes
ROOT

Python3

MoMEMta
ROOT

Python3

LHE (MadGraph5)
HEPMC (Pythia)

Delphes/ROOT files

ROOT TTrees

MoMEMta
Weights

MadGraph
Config file

45 Minutes (200 workers)

34 Minutes (200 workers)

Dockerized
Container
Data Flow

Parallel Time Serial Time

Entire Pipeline 45 Minutes 150 Hours

MoMEMta 34 Minutes 113 Hours

Particle level/interaction
simulation

Detector level
simulation

Event selection

Full MEM calculations
SCAILFIN

For 300k events of p + p 𝑙 + 𝑙 + 𝑋

https://scailfin.github.io/

DeepMEM Objectives
• Address the challenges of MEM while retaining the benefits:

• Retain the transparency and accuracy of MEM calculations
• Reduce the time required by MEM calculations

• Deep Neural Networks: arbitrary function approximators that
scale well with data

• Replace the calculations performed by MoMEMta with a deep
neural network trained using MoMEMta outputs

• Final calculations used in an analysis would be performed using
the full pipeline for accuracy – Using DeepMEM expedites
calculations during research and development

MEM Pipeline using DNN Approximations

MadGraph5
Pythia

LHAPDF
Python3

Delphes
ROOT

Python3

Delphes
ROOT

Python3

MoMEMta
ROOT

Python3

LHE (MadGraph5)
HEPMC (Pythia)

Delphes/ROOT files

ROOT TTrees

MoMEMta
Weights

MadGraph
Config file

DeepMEM
ROOT
TTrees

Approximate
MoMEMta
Weights

Dockerized
Container

Data Flow Neural
Network

Parallel Time Serial Time

Full Pipeline 45 Minutes 150 Hours

MoMEMta 34 Minutes 113 Hours

Trained
using

Inference Time Training Time†

DeepMEM 2 Minutes 18 Mins*

For 300k events of p + p 𝑙 + 𝑙 + 𝑋

* Trained for 100 epochs † Training needs to be done only once for a particular final state

Data and Selection Description
We consider the simple Drell-Yan Process with lepton pair final state:

• Parsing the ROOT TTrees produced after event selection, we use
the 4-momentum of the final state particles and MET

• Mass is a very good discriminant, and we keep the neural network
blind to the mass by excluding it (following the approach of [4])

p + p 𝑙 + 𝑙 + 𝑋

• Inputs:
• Pt, Eta, Phi components of leptons and jet(s)
• Magnitude and Phi of the MET
• 14 input parameters

• Outputs:
• Log transformed MoMEMta weight values

• Final Dataset contains ~300K events

https://arxiv.org/abs/2008.10949

Multiprocessing DataLoader
• PyTorch In-built dataloader is built for image/computer vision

data – loads individual samples based on user mappings
• This is inefficient for contiguous, tabular data

• No out-of-the-box solution that can address the issues
• Tabular data is loaded faster in chunks
• The dataset might be too large to fit in memory at once

• Data Managing and Loading Module:
1. Parse ROOT TTrees based on user-input
2. Use Python Multiprocessing library constructs to store a “cache” of data
3. Spawn processes using PyTorch to load data from cache
4. Load the next chunk of data and replace the “cache”

• We get significantly faster data loading
 in comparison to the in-built dataloader

Load Time
In-Built 506 s
Our Implementation 55 s

Load times are for 100 epochs of
the MoMEMta test dataset

Network Architecture

• We use a Fully-Connected Deep Neural
Network with 5 deep layers of 200 Nodes each

• We split the data 8:1:1 for training, validation
and testing purposes

• The output is the approximate transformed
MoMEMta weights for N = ~270k training and
validation events

• The network is trained for 100 epochs

DNN A: 5 Deep and fully-connected Layers

Input: (N, Np = 14)

Output: (N, 1)

Results using DNN

• Testing on unseen data gives us a
good visual fit between DeepMEM
predictions and the test data

• Ratio =

• Mean Absolute % Error = 1.6%

 where

• However, we can see that the
network cannot generalize well
on bins that do not contain a lot
of events

𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛
𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛

Results from DNN A: 5 Deep and fully-connected Layers

Residual Networks
Residual Networks are neural network architectures that incorporate
skip connections in the network architecture

Ease training for deep networks by providing shortcuts for
backpropagation, while gaining accuracy from the depth of the
network (see ref [5])

ResNets have empirically shown to
have better results for aggressively
deep networks (ILSVRC 2015) [5]

Why do ResNets work?
• They address the gradient vanishing phenomenon
• Smaller loss values can successfully transmit through a deep network and update

the earlier layers

Image credit & Ref: [5] K. He, X. Zhang, S. Ren, J.Sun, Deep Residual Learning for Image Recognition

https://arxiv.org/abs/1512.03385?context=cs
https://arxiv.org/abs/1512.03385?context=cs
https://arxiv.org/abs/1512.03385?context=cs

Residual Network Architecture

ResNet A: 5 Deep Layers followed by a
skip connection

ResNet B: 6 Deep Layers followed by a
skip connection

We include a skip
connection into the original
DNN A while retaining Depth

(This Network is less
complex than DNN A)

We include a skip
connection into the original
DNN A by adding an extra

layer to the depth

(This Network is more
complex and deeper than

DNN A)

Results using Residual Network A
• We see much better

generalization using this
architecture

• Mean Absolute % Error = 1.4%

• We argue that adding a
skip connection improved
the results since ResNet A
was less complex than
DNN A

Results from ResNet A: 5 Deep Layers followed by a skip connection

Results using Residual Network B
• We see even better

generalization using this
architecture

• Mean Absolute % Error = 1.2%

• A more complex network
with a skip connection
gives us slightly better
results by leveraging its
depth

Results from ResNet B: 6 Deep Layers followed by a skip connection

Generalization in Kinematic Phase Space
Check ResNet B modeling on different kinematic subsets of the data
(no retraining!)

Good modeling retained robust against leading lepton pt cut
Similar results for subsets through jet pt thresholds

pT(leading lepton) > 30 GeV pT(leading lepton) > 40 GeV pT(leading lepton) > 50 GeV

Summary and Future Work
• Implemented ML methods to approximate MEM calculations and

demonstrated the viability of this approach on a simple DY process
• Implemented a versatile and performant Multiprocessing Dataloader
• Implemented Residual Network architecture for better generalization
• Checked that the model is robust against kinematic selections

❖A next step in this study is to go beyond the simple DY process to
other processes with more complex decays and final state particles

❖Explore other ML architectures which include physics constraints
❖Generate simulated data and models adhering to FAIR principles

❖ See talk by Avik Roy (UIUC) in this session

DeepMEM is an open-source python library distributed on PyPI
that can be used on similar datasets: python -m pip install deepmem

https://agenda.infn.it/event/28874/contributions/169888/
https://github.com/mihirkatare/DeepMEM

Acknowledgments
• This work was performed by Mihir Katare and Matthew Feickert,

with guidance from Avik Roy

Mihir Katare Matthew Feickert Avik Roy

• This work was supported through
grants from the National Science
Foundation: IRIS-HEP (OAC-1836650)
and SCAILFIN (OAC-1841456)

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1836650
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1841456

