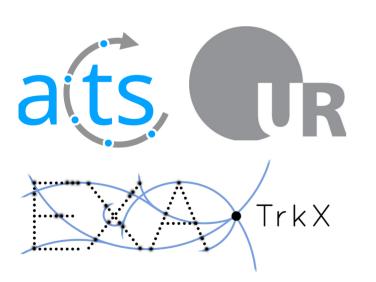
ICHEP 2022

Applying the Exa.TrkX pipeline to the OpenDataDetector with ACTS

08.07.2022

Benjamin Huth Universität Regensburg

Andreas Salzburger (CERN), Lukas Heinrich (TU München), Tilo Wettig (Universität Regensburg), **Exa.TrkX authors**: Alina Lazar*, Xiangyang Ju*, Daniel Murnane*, Paolo Calafiura* **Lawrence Berkeley National*



Content

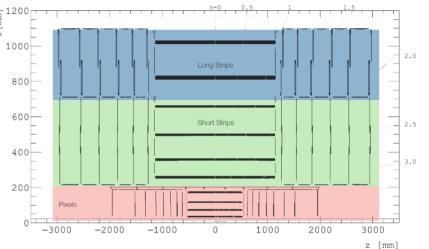
- 1) ACTS and the OpenDataDetector
- 2) The Exa.TrkX pipeline
- 3) Training & Performance
- 4) Comparison to CKF & Parameter fit
- 5) Summary & Outlook

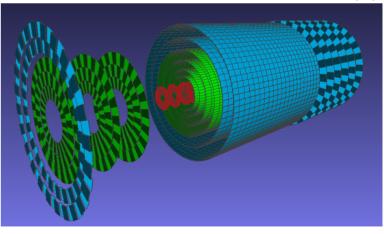
- ACTS is an experiment-independent toolkit in modern C++ for charged particle tracking.
 - State-of-the-art implementations of standard algorithms and R&D testbed
 - Used in several experiments: ATLAS, sPHENIX, FASER
 - For more infos see <u>here</u> and on <u>github.com/acts-project/acts</u>

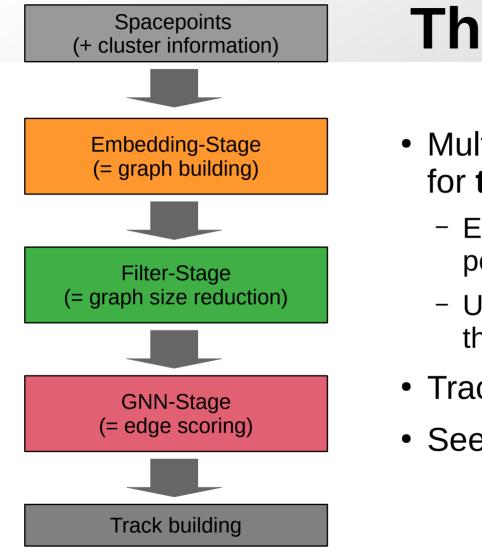
ACTS

The OpenDataDetector

- The OpenDataDetector is a purely virtual, but realistic detector for testing and R&D purposes
 - Shipped with and interfaces to ACTS
- Changes wrt. the TrackML detector:
 - more precise material description
 - capability of full-simulation
 - based on DD4hep
- For more details see <u>here</u> (Paul Gessinger, ACAT 2021)





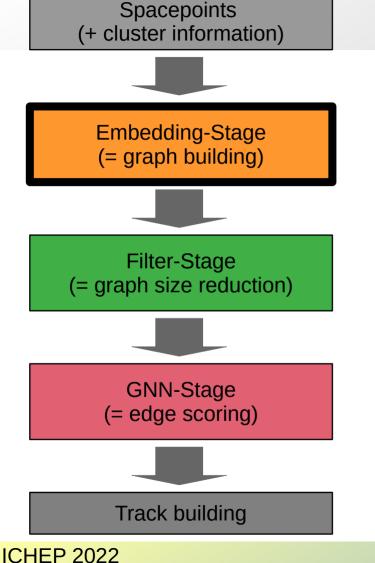


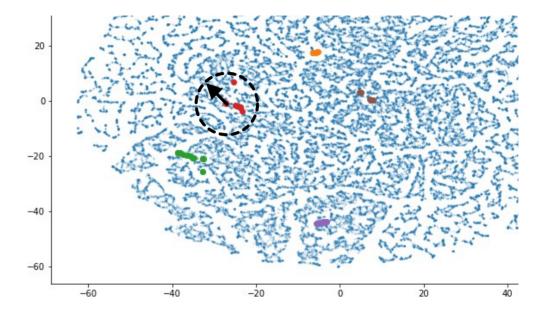
ICHEP 2022

The Exa.TrkX pipeline

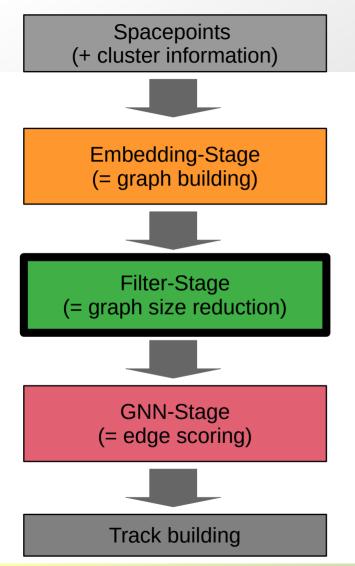
- Multi-stage machine-learning pipeline for **track finding**
 - Event as a graph (nodes = hits, edges = potential track segments)
 - Use ML (especially GNNs) to find edges that correspond to track segments
- Track fitting is performed by ACTS
- See e.g. here (Alina Lazar, ACAT 2021)

Embedding Stage





- Learn *d*-dimensional embedding that groups hits of the same track together
- Build graph with fixed-radius k-nearest-neighbor search
- Graph size: O(10M) edges, ~70K nodes

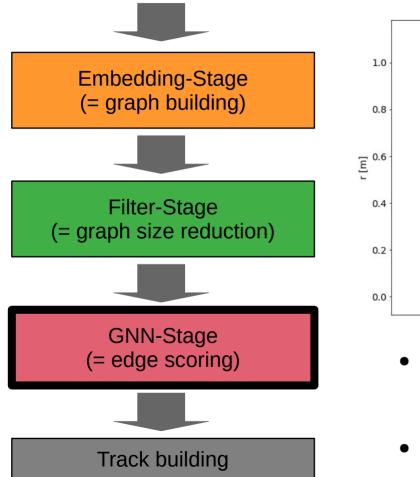


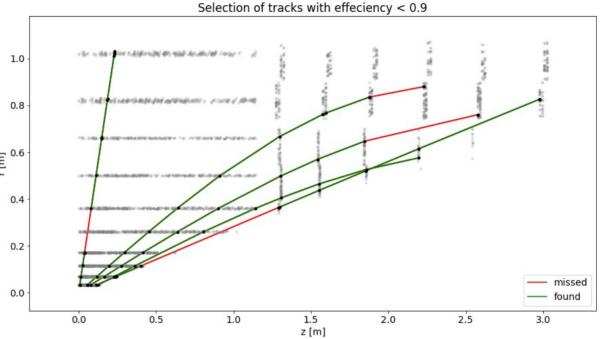
Filter Stage

- Reduce graph size:
 - Neural-Network predicts wether two "nodes" are likely to be connected by a track
 - Necessary to keep GNN memory consumption managable
- Graph size: O(1M) edges,
 ~70K nodes

Spacepoints (+ cluster information)

GNN Stage





- Message-passing graph neural network + binary edge classification
- Graph size: ~70K edges, ~70K edges

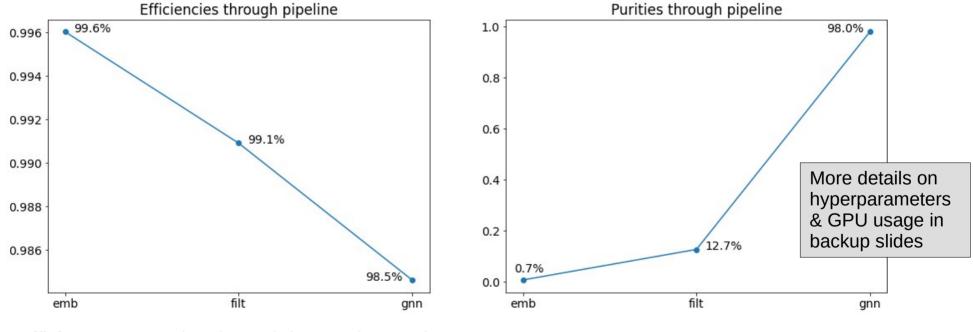
Experiment setup

• Physics process:

- Pythia8 generator: HardQCD:all + 200 pileup (HL-LHC conditions)
- ACTS Fatras Simulation in the OpenDataDetector
- ~7K particles per event
- Hardware: Nvidia A100 with 40 GB memory
- **Training software:** Training pipeline based on Pytorch, Pytorch-Lightning and ,traintrack' (custom pipeline configurator)
 - Easy setup of training via traintrack (resume crashed runs, ...)
 - Adjustments where necessary to support ODD (mainly data import)
- C++ Inference: ACTS plugin based on TorchScript

Training

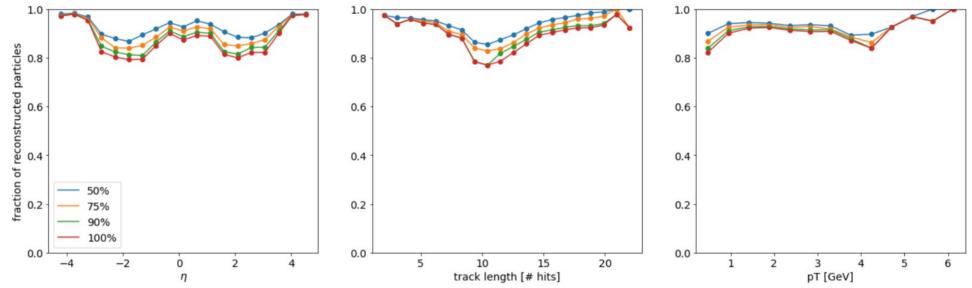
- 1000 events (950/25/25 for training/validation/test)
- Trained with simulated hit positions (no readout-uncertainity so far)



efficiency = #true-edges-in-graph / #true-edges-total

Inference results in ACTS

Fraction of reconstructed particles with different efficiency thresholds



• Could be improved by:

ICHEP 2022

- Adding cluster-information to training data
- More events / epochs for training
- Results shown for truth hit input

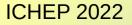
Particle-based **efficiency**: eff = #hits-in-best-track / #hits-of-particle

Comparison with CKF*

- CKF relies on
 - correct error and material description
 - tuned parameters for initialization & combinatorial search
- For this work: Auto-Tuning of 7 parameter with Optuna**
- Applied particle pre-selection for both CKF and Exa.TrkX
 - Cut **pT < 500 MeV**
 - Cut **|eta| < 3**
 - Cut **r < 2 mm** (distance from origin in transverse plane)

* Combinatorial Kalman Filter

** See work on automatic optimization for the CKF by Rocky Bala et al here

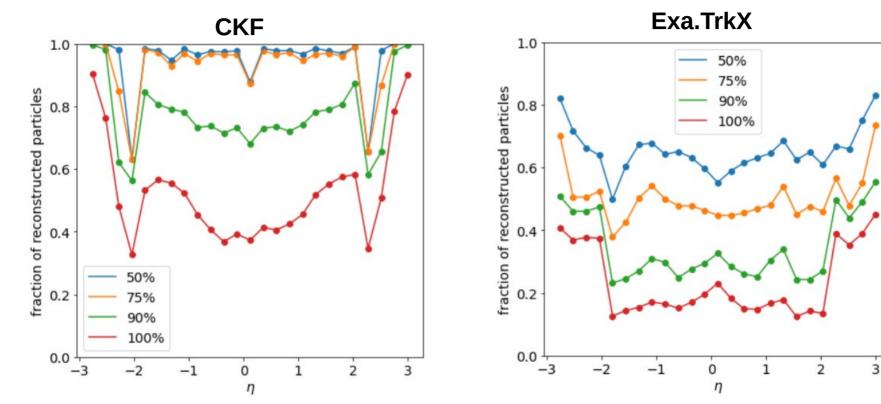


Reconstruction: true hit positions



 Error description and parametrization not optimized • Exa.TrkX profits from applied cuts

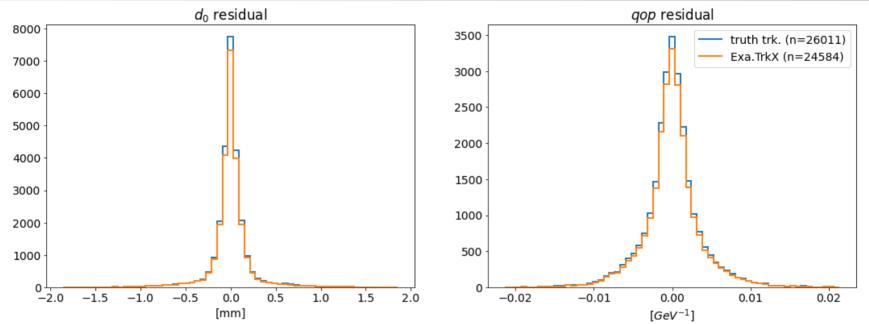
Reconstruction: smeared hits



 Almost no sensitivity to hit position changes

- Influence of training with truth positions
 - very sensitive to hit positions

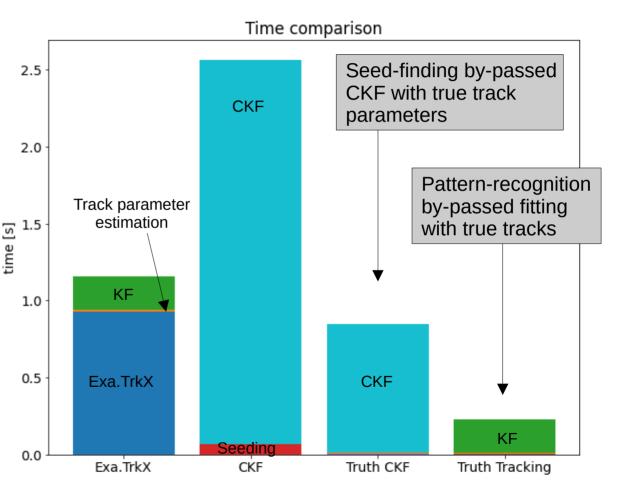
Parameter Fit



- New in this project: Combination of Exa.TrkX and Kalman-Fitter (KF)
 - True hit positions as input for Exa.TrkX inference
 - Track parameter resolution of Exa.TrkX pipeline are reaching achievable limit
- CKF not shown here (no ambiguity solution available in ACTS so far)

Timing comparison for full-chain

- GNN-based and combinatorial approach to trackfinding perform similar in **per-event timing**
- CKF & KF run on single CPU core
- Exa.TrkX can exploit available GPU hardware (see backup for details)
- True hit positions as input for CKF and Exa.TrkX inference



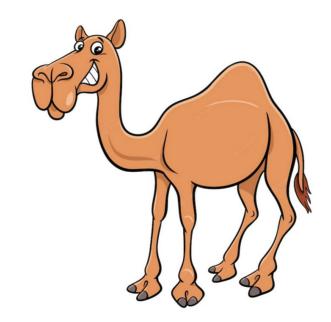
Summary & Outlook

• Summary:

- Applied Exa.TrkX pipeline to the OpenDataDetector
- Assembeled full-chain example using Exa.TrkX and the ODD
- Next steps:
 - Train with simulated measurements instead of true hits (and thus more input uncertainity)
 - Investigate using cluster information from pixel and strip hits
 - Update ACTS Exa.TrkX plugin and add example-code for OpenDataDetector

Thank you for your attention!

Backup

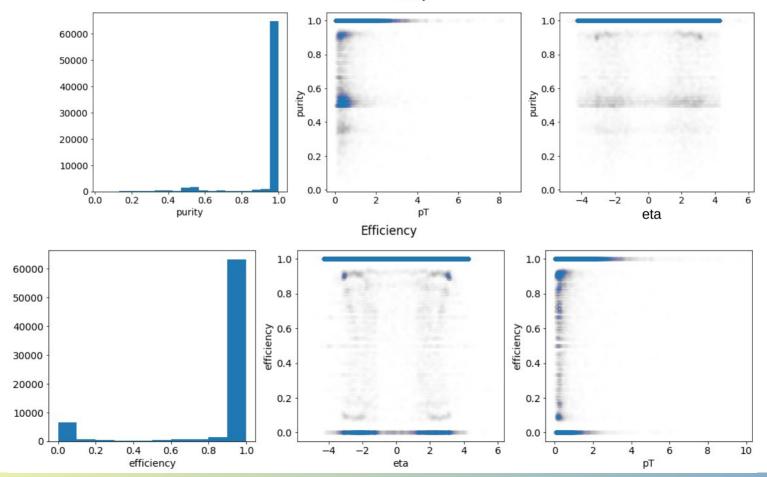


OpenDataDetector hit smearing

- Dependent on detector region:
 - Pixels: stddev_ {x,y} = $10\mu m$
 - Short Strips: stddev_x = 45μ m, stddev_y = 1.2mm
 - Long Strips: stddev_x = 60μ m, stddev_y = 3.6mm
- Geometric digitization not validated so far

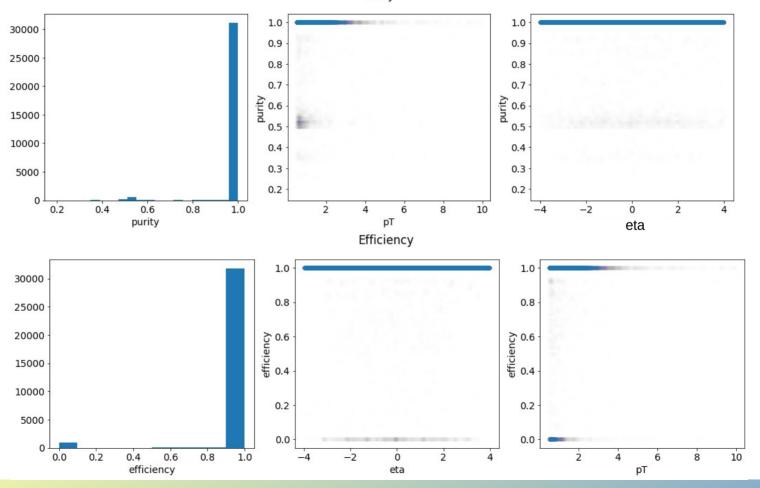
Exa.TrkX Pur & Eff (w/o cuts)

Purity



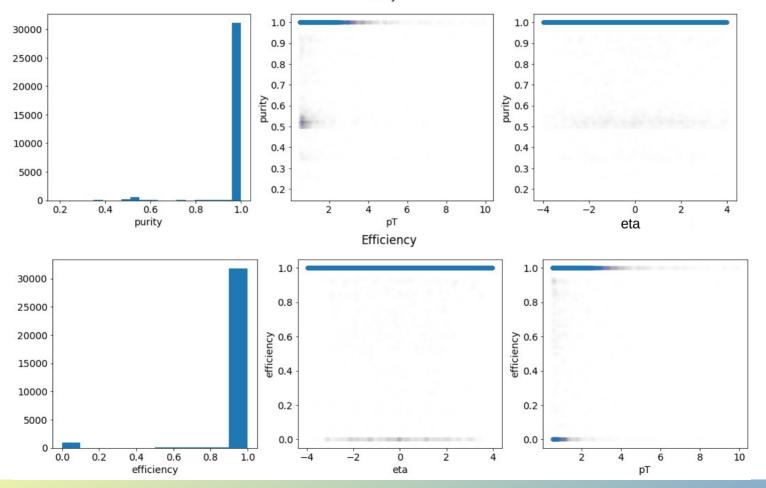
Exa.TrkX Pur & Eff (w/ cuts)

Purity



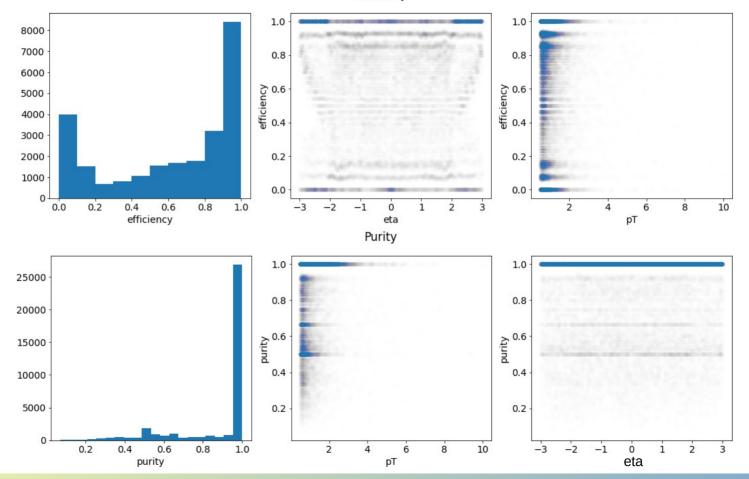
Exa.TrkX Pur & Eff (w/ cuts & true)

Purity



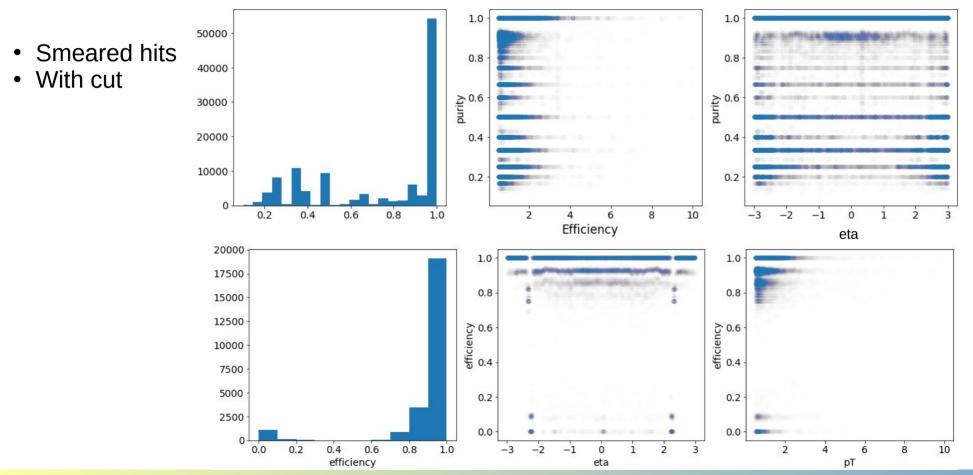
CKF Pur & Eff (w/ cuts & smear)

Efficiency



CKF Pur & Eff

Purity



Hyperparameters

Embedding

emb_dim	8
emb_hidden	1024
knn	50
max_epochs	20
nb_layer	4
points_per_batch	130000
r_{train, test, val}	0.2
true_edges	modulewise
regime	[rp, hnm, norm]
id	292tlcta

Filtering

filter_cut	0.01
hidden	512
nb_layer	4
true_edges	modulewise
regime	[]
max_epochs	20
id	267d78hx

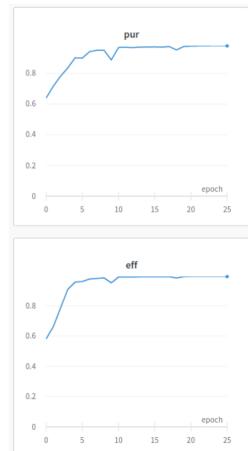
GNN

edge_cut	0.5
hidden	128, ReLu
nb_{edge, node}_layer	5
true_edges	modulewise
n_graph_iters	8
regime	[]
max_epochs	25
learning_rate	0.001
id	3iqwzub9

Training metrics



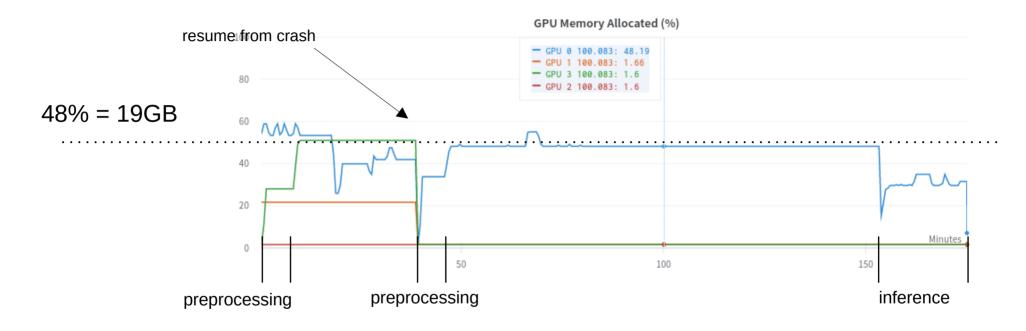
GNN



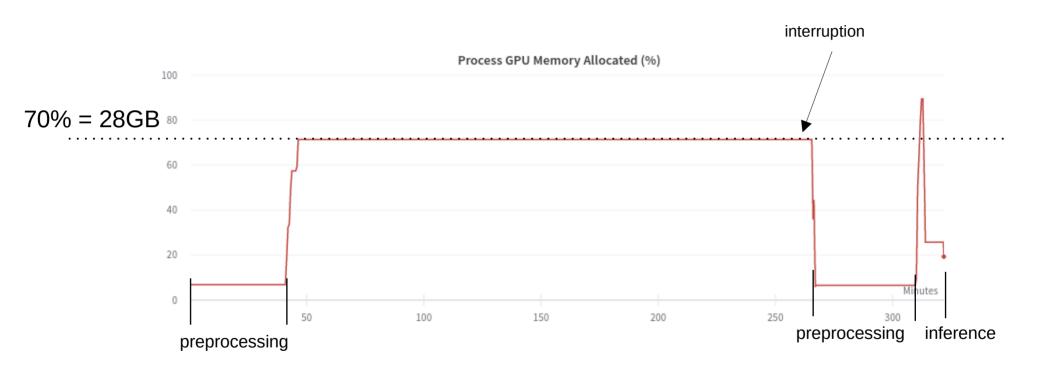
Hardware

- CPU:
 - AMD EPYC 7662 64-Core Processor
 - 1 TB RAM
- GPU:
 - 4x NVIDIA A100-SXM4 with 40GB

Memory profile training embedding

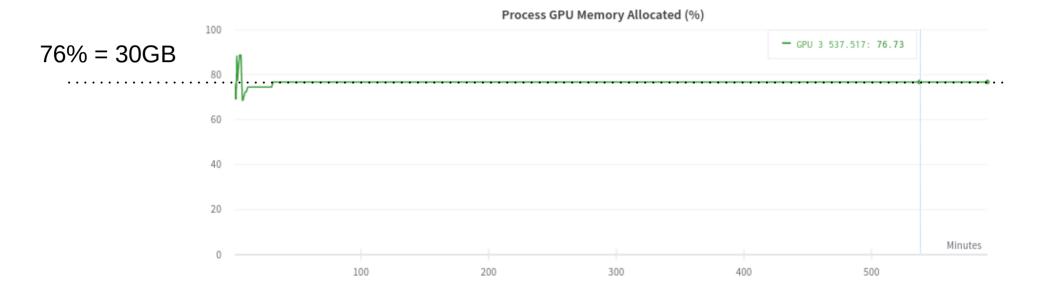


Memory profile training filter



Memory consumption controllable by "chunking" graph

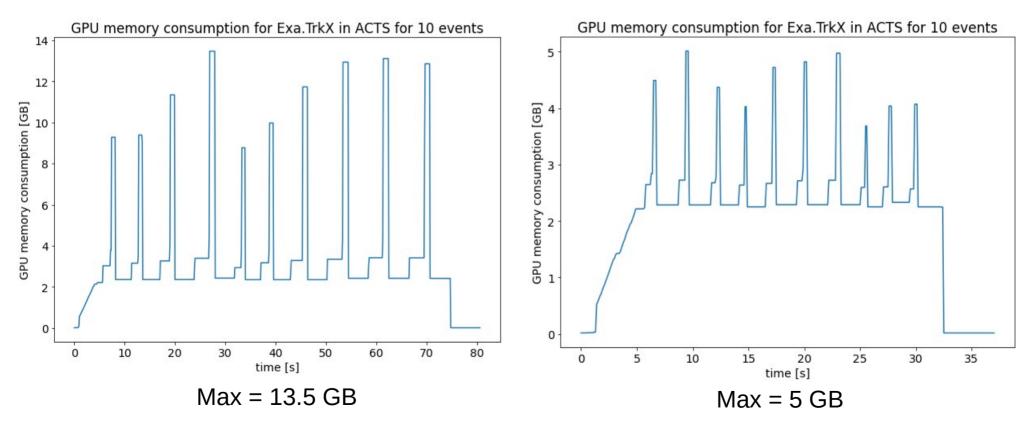
Memory profile training GNN



Memory profile inference in ACTS

No cuts on particles

With cuts on particles



More residuals

