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1. Calorimetery in CMS
2. Why use graph networks?
3. How do graph networks work?
4. Three case studies in CMS:

a. Electron/photon energy reconstruction in the CMS crystal ECAL
b. Pion energy reconstruction in the prototype HGCAL testbeam
c. Hit-to-particle reconstruction in the CMS HGCAL

5. Conclusions
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Calorimetery in CMS

● Phase 1 detector:
○ Crystal ECAL: homogeneous calorimeter composed of ~75k 

scintillating PbWO4 crystals
○ Preshower: sampling calorimeter, in front of ECAL endcaps
○ HCAL: Sampling hadronic calorimeter situated just outside 

ECAL
● Phase 2 detector:

○ Add HGCAL: Replaces endcap calorimeters (both ECAL and 
HCAL). Silicon and scintillator tile sampling calorimeter with 
unprecedented granularity (~6 million readout channels)

● Today focus on ECAL and HGCAL reconstruction
○ Similar work also in progress in HCAL

● Performance of calorimeter energy measurements is 
critical for nearly all physics in CMS
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Calorimeter reconstruction

● Start with pattern of detector hits
● Two main tasks:
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Calorimeter reconstruction

● Start with pattern of detector hits
● Two main tasks:

○ Associate each incident particle with a collection of hits
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Calorimeter reconstruction

● Start with pattern of detector hits
● Two main tasks:

○ Associate each incident particle with a collection of hits
○ Compensate for any energy mismeasurement

6

JINST 16 (2021) P05014 

Unclustered energy Energy shared between 
particles

Clusters corresponding to 
individual incident particles
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Calorimeter reconstruction

● Start with pattern of detector hits
● Two main tasks:

○ Associate each incident particle with a collection of hits
○ Compensate for any energy mismeasurement

● Both typically done by rule-based algorithms or boosted decision trees (BDTs)
○ Rely on high-level human-engineered inputs
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New machine learning strategy

● ML is most powerful when applied on 
low-level inputs

○ Gives model access to full information content of 
every event

○ Avoids potential for biases from human feature 
engineering

● This has been seen in e.g. jet tagging*
○ Train on jet constituents rather than high-level 

variables
● We would like to also train on low-level 

calorimeter inputs: the detector hits
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arXiv:1909.12285*First with deepJet: arXiv:2008.10519

https://arxiv.org/abs/1909.12285
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What architecture to use?

● Inputs can be challenging for most architectures
○ There can be any number of hits (detector is zero-suppressed, so not all channels are active)
○ They can be distributed across multiple very different detector components
○ They are naturally represented in at least 4 dimensions (x, y, z, energy)
○ They are in no particular order

● Graph networks are the best option for these types of inputs
9

Can it (easily) handle… BDT MLP CNN RNN GNN

Variable-size input 🇽 🇽 ✅ ✅ ✅
Complicated geometries ✅ ✅ 🇽* ✅ ✅
4D inputs ✅ ✅ 🇽 ✅ ✅
Unordered inputs 🇽 🇽 ✅ 🇽 ✅

*CNNs work best with rectangular input spaces
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How do graph networks work?

1. Collection of hits is represented as a point cloud
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How do graph networks work?

1. Collection of hits is represented as a point cloud
2. Generate graph by drawing edges between k nearest neighbors of each hit
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How do graph networks work?

1. Collection of hits is represented as a point cloud
2. Generate graph by drawing edges between k nearest neighbors of each hit
3. Perform “message passing” to allow information to flow along graph edges 

(analogous to image convolutions in CNNs)
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Case Study: ECAL energy regression
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Problem statement

● Electron/photon energies measured in ECAL subject to losses, including
○ Energy lost in gaps and upstream material
○ Longitudinal energy leakage
○ Finite thresholds to suppress noise

● Compensated per-particle by ML regression
● Run-2 corrections implemented as a BDT 

○ Uses ~30 high-level input features to describe EM shower
● BDT corrections first developed for Higgs discovery in 2012
● BDT energy corrections have supported all physics analyses using 

electrons/photons in CMS during LHC Run 2
● Can we do better using a graph network?
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The Dynamic Reduction Network

● New architecture: Dynamic Reduction Network (DRN)[1], based on dynamic graph NNs
○ Graph operations take place in a high-dimensional latent space
○ Added clustering and pooling step to aggregate information across the graph

● Input includes hits from both ECAL and ECAL preshower, as well as additional features to describe 
information not encoded in the hit collection (pileup, leakage into HCAL)

● Outputs parametrization of double-sided crystal ball probability density for energy correction factor

15

[1]: arXiv:2003.08013

https://arxiv.org/abs/2003.08013
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Performance

● Improved per-object energy resolution by factor of ~10% 
● Translates to improved invariant mass resolution by factor of ~5%
● First major change to energy regression algorithm since 2012

○ In process of being deployed for Run 3
○ 16

ggH→γγ
Simulation

DY Z→ee
2018 DATA

Photon gun 
Simulation

CMS DP-2022/019

CMS DP-2022/019
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Passive material

modules
modules

Case Study: HGCAL prototype testbeam 
pion energy reconstruction
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Baseline energy reconstruction
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● Prototype detector with 3 different sections
○ Si CE-E, CE-H, scintillator-tile CALICE AHCAL

● Detector-level calibration:
○ CE-E (CE-H+AHCAL) calibrated with 50 GeV e+ (π–) 

beam

● χ2-method : 
○ CE-E, CE-H, AHCAL combined with energy-dependent 

weights

■ MIP-like in CE-E optimized separately
○ Very simple baseline 

■ Doesn’t know about event-by-event fluctuations
■ Ignores high granularity of detector

Passive material

modules
modules

Passive material

modules
modules

CMS-DP-2022/022



Simon Rothman            ICHEP 2022

With Dynamic Reduction Network
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● Use same Dynamic Reduction Network as in ECAL regressions
● Dramatic improvement in energy resolution w.r.t. χ2 method

○ DRN able to compensate for different response in EM and Hadronic shower components
○ Can correct for both longitudinal and transverse leakage

Different response compensated by DRN

CMS-DP-2022/022
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Case Study: Hit-to-particle 
reconstruction in the HGCAL
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Problem statement 

● HGCAL detector poses novel problems for event reconstruction
○ ~3 million readout channels per endcap
○ ~200,000 hits per event in HL-LHC conditions

● Need to perform “particle tracking” for showers
○ Not simple helical trajectories 

● How do we go from >100,000 hits to collection of particles and their properties?
○ No viable pre-existing algorithm for this task

21
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Graph-based approach

● Huge number of channels requires novel computational 
techniques

● Modified graph architecture[1]

○ High-dimensional information is projected into low-dimensional space for 
graph generation

○ Add distance weighting to graph message passing
● Novel loss function allows identification of arbitrary number of 

particles and reconstruction of their energies[2]

● Input: all HGCAL hits in a given event
● Output: clustering of hits into particles with corrected energies

○ Alternatively could apply separate dedicated corrections with e.g. DRN
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[1]: arXiv:2204.01681
[2]: arXiv:2002.03605

https://arxiv.org/abs/2204.01681
https://arxiv.org/abs/2002.03605
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Performance

● Efficiently recovers hadronic and EM energy deposits
● Clear (qualitative) separation between particles
● Performance very good even in dense areas; 

○ Expected to work well for pileup, substructure, etc

23

Gray hits are noise
Colored hits are due to 
individual incident particles
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Conclusions

● Even the best analyses can only be as precise as their inputs
● Transition to training on low-level inputs allows new strategies and more 

precisely reconstructed objects
● The most effective way to incorporate low-level calorimeter hits into a 

machine learning model is with graph neural networks
● The three examples shown today are just some of many being used across 

CMS, in applications such as
○ Energy reconstruction
○ Hit clustering (see also Badder’s talk from yesterday)
○ Particle identification
○ Jet substructure

● Methods are general and applicable to any detector
24

https://agenda.infn.it/event/28874/contributions/169201/
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Backup

25
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The CMS Electromagnetic Calorimeter

● Electron/photon energies measured in electromagnetic calorimeter (ECAL)
● Homogeneous calorimeter made of 75,848 scintillating PbWO4 crystals

○ Divided into barrel (61,200 crystals) and two endcaps (7,324 crystals each)
○ Endcaps are preceded by sampling preshower calorimeter (ES)

26
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DRN electron regression (barrel)

27

Dynamic Reduction Network 
(DRN) and Boosted Decision Tree 
(BDT) performance in the ECAL 
barrel as a function of generated 
transverse momentum. 
Performance is evaluated on 
electron gun simulation with ideal 
detector calibration. Error bars 
represent fitting uncertainties. 
Left: Mean response EPred/ETrue. 
Regression response is stable to 
within better than 0.5%. Right: 
Relative resolution. The DRN 
obtains a better resolution than 
the BDT by a factor of ≈ 10% at all 
values of pT.
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DRN electron regression (endcaps)

28

Dynamic Reduction Network 
(DRN) and Boosted Decision Tree 
(BDT) performance in the ECAL 
endcaps as a function of 
generated transverse momentum. 
Performance is evaluated on 
electron gun simulation with ideal 
detector calibration. Error bars 
represent fitting uncertainties. 
Left: Mean response EPred/ETrue. 
Regression response is stable to 
within better than 0.75%. Right: 
Relative resolution. The DRN 
obtains a better resolution than 
the BDT by a factor of ≈ 10% at all 
values of pT.
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DRN electron regression (Z peak, barrel)
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Di-electron invariant mass 
distributions of Z→ee events in 
simulation (left) and 2018 Legacy 
data (right) for both the Dynamic 
Reduction Network (DRN) and 
Boosted Decision Tree (BDT) 
architectures. Events are selected in 
which both electrons pass a tight ID 
requirement and are detected in the 
ECAL barrel. The DRN obtains an 
improved resolution with respect to 
the BDT by a factor of about 5% in 
both data and simulation. Note that in 
these results the residual corrections 
which match the energy scale in data 
to that in simulation have not been 
applied. However, we do see that in 
simulation the DRN obtains a Z peak 
closer to the known Z mass of 91.1 
GeV.Simulation Data
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DRN electron regression (Z, endcaps)
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Simulation Data

Di-electron invariant mass distributions of 
Z→ee events in 2018 Legacy simulation 
(left) and 2018 Legacy data (right) for 
both the Dynamic Reduction Network 
(DRN) and Boosted Decision Tree (BDT) 
architectures. Events are selected in which 
both electrons pass a tight ID requirement 
and are detected in the ECAL endcaps. 
The DRN obtains an improved resolution 
with respect to the BDT by a factor of 
about 5% in both data and simulation. 
Note that in these results the residual 
corrections which match the energy scale 
in data to that in simulation have not been 
applied. However, we do see that in 
simulation the DRN obtains a Z peak 
closer to the known Z mass of 91.1 GeV. 
The difference in energy scale between 
the data and simulation is likely related to 
differences between the detector 
conditions in data and simulation. This 
difference is larger in the endcaps than in 
the barrel.Simulation Data
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DRN photon regression (barrel)
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Dynamic Reduction Network 
(DRN) and Boosted Decision Tree 
(BDT) performance in the ECAL 
barrel as a function of generated 
transverse momentum. 
Performance is evaluated on 
photon gun simulation with ideal 
detector calibration. Error bars 
represent fitting uncertainties. 
Left: Mean response EPred/ETrue. 
Regression response is stable to 
within better than 0.2%. Right: 
Relative resolution. The DRN 
obtains a better resolution than 
the BDT by a factor of ≈ 10% at all 
values of pT.
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DRN photon regression (endcaps)
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Dynamic Reduction Network 
(DRN) and Boosted Decision Tree 
(BDT) performance in the ECAL 
endcaps as a function of 
generated transverse momentum. 
Performance is evaluated on 
photon gun simulation with ideal 
detector calibration. Error bars 
represent fitting uncertainties. 
Left: Mean response EPred/ETrue. 
Regression response is stable to 
within better than 0.4%. Right: 
Relative resolution. The DRN 
obtains a better resolution than 
the BDT by a factor of ≈ 15% at all 
values of pT.



Simon Rothman            ICHEP 2022

DRN photon regression (ggH→γγ)
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Di-photon invariant mass 
distributions of H→γγ events in 
2018 Legacy simulation for both 
the Dynamic Reduction Network 
(DRN) and Boosted Decision Tree 
(BDT) architectures. The Higgs 
peak is fit with a Cruijff function to 
parameterize the detector 
response and resolution. Left: 
events in which both photons are 
detected in the barrel region of the 
ECAL. Right: events in which 
both photons are detected in the 
ECAL endcaps. The DRN obtains 
an improved resolution with 
respect to the BDT by a factor of 
about 5% in both detector regions. 
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HGCAL testbeam
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Passive material

modules
modules

CE-E
● Si sensors
● Cu/CuW & Pb 

absorbers
● 28 sampling layers

CE-H
● Si sensors
● Cu/CuW & Steel 

absorbers
● 12 sampling layers

CALICE AHCAL
● Scintillator tiles on SIPMs
● Steel absorbers
● 39 sampling layers

○ Downsample to only every fourth layer 
to match final HGCAL geom

● Total of ~17k readout channels 
(after downsampling AHCAL)

● Testbeam Oct. 2018 
○ At H2 Beamline, CERN

● Exposed to e+ and π–  beams with 
energies ranging from 20–300 GeV
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Example pion shower event display

35

AHCAL

CE-H

CE-E

300 GeV π⁻

Pion shower in HGCAL prototype testbeam. Each square is a detector hit 
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Effect of different DRN input feature sets 

● HGCAL testbeam DRN trained with different hit coordinates
○ DRN(E) = trained only with hit energies
○ DRN(E, z) = trained with energy and z coordinate (can learn longitudinal shower development)
○ DRN(E, x, y, z) = trained with energy and full 3D hit coordinates (full view of shower)

● Major improvement comes from DRN(E) compensating EM/hadronic response
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