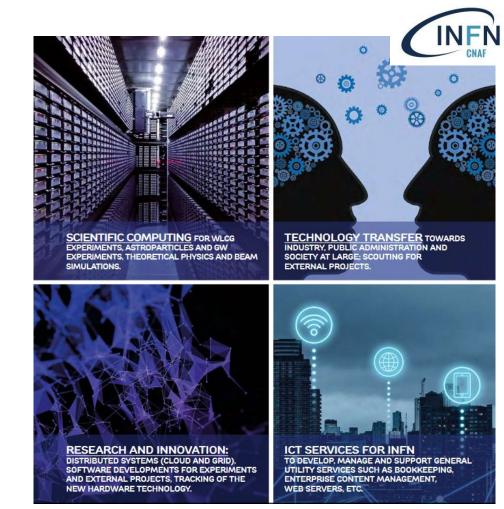
Large-scale Data Handling experience at INFN-CNAF Data Center

Lucia Morganti on behalf of the storage team @INFN-CNAF

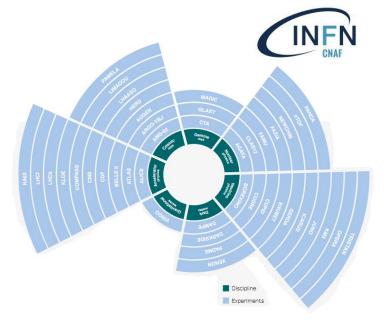
Outline

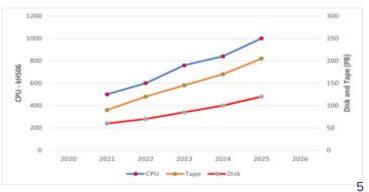
- Introduction
- Architectural choices
- Data access
- Future challenges and conclusions


Introduction

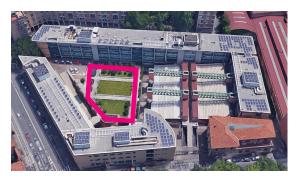
The CNAF Data Center

 CNAF, located in Bologna, is the INFN National Center dedicated to Research and Development on Information and Communication


Technologies

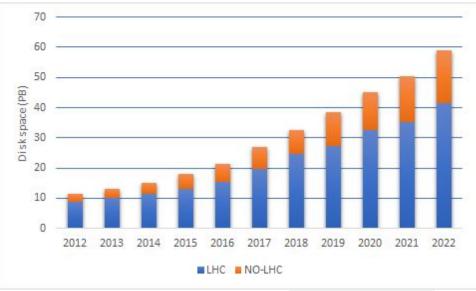

• CNAF hosts the main INFN data center, the INFN Tier-1 in the WLCG e-infrastructure

WLCG Tier-1


- Provides services and resources to more than 40 scientific collaborations
 - LHC experiments so far the more demanding
 - ~42k cores,~50 PB of disk, ~116 PB of tape
- Huge increase of resources foreseen in the coming years. By 2025:
 - ~130k cores, ~110 PB of disk, ~250 PB of tapes
 - and even more (x10) from 2027 (HL-LHC)
- The Data Center is moving to a new location. Three main drivers for the move to the Tecnopolo:
 - expected huge increase in IT resources
 - infrastructural problems at the current site
 - the opportunity offered by the new location.

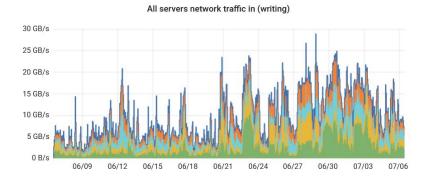
CNAF Data Center

- Usable area of the data centre: 800 m²;
- Maximum electrical power 1.4 MW
- With the current IT technology, we would be able to host IT resources to cover the requirements up to the end of LHC Run 3 (2024).

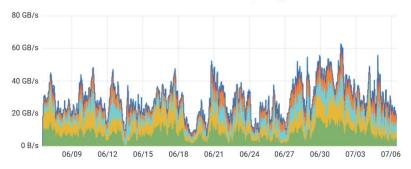

... moving to the Tecnopolo

- Usable area larger than 2000 m², electrical power from 3 MW in the first phase to 10 MW from 2027.
- A greener DC (targeting 1.08-1.10 PUE)
- Goal: meet the requirements for the data taking of the HL-LHC experiments up to 2035 and beyond, providing as well services for many other INFN experiments, projects, and activities.

Disk storage @CNAF

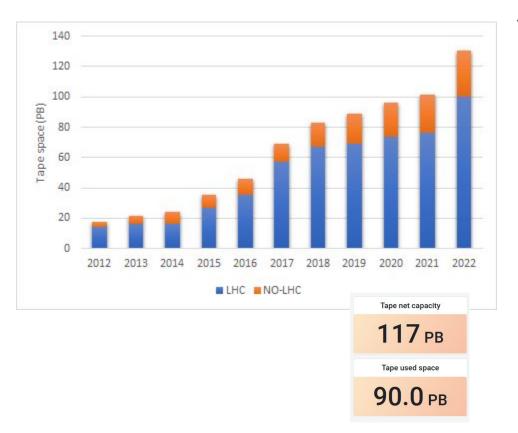


Disk net capacity 49.8 PB Disk used space 42.5 PB Disk storage:


- DDN SFA12K (x2) and SFA7900 (x2)
- Huawei OS18800v5 (x5), 6800v5 and 5800v5 (x4)
- DELL MD3860F (x4)
- Some SSD and NVME disks for metadata

Disk storage @CNAF

All servers network traffic out (reading)


Disk storage:

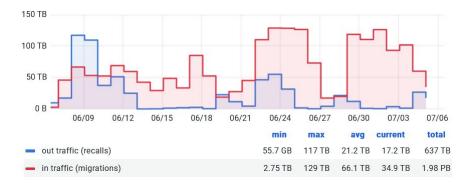
- DDN SFA12K (x2) and SFA7900 (x2)
- Huawei OS18800v5 (x5), 6800v5 and 5800v5 (x4)
- DELL MD3860F (x4)
- Some SSD and NVME disks for metadata

- ~700 TB in, ~1.7 PB out per day
- ~300k transferred files per day

Tape storage @CNAF

Two tape libraries:

- ORACLE SL8500
 - \circ 10000 slots fully filled
 - 16 T10KD tape drives
 - 8.4 TB tape cartridges
 - 250 MB/s bandwidth per drive


• IBM TS4500

- 6198 slots
- 19 TS1160 tape drives
- 20 TB tape cartridges
- 400 MB/s bandwidth per drive

Tape storage @CNAF

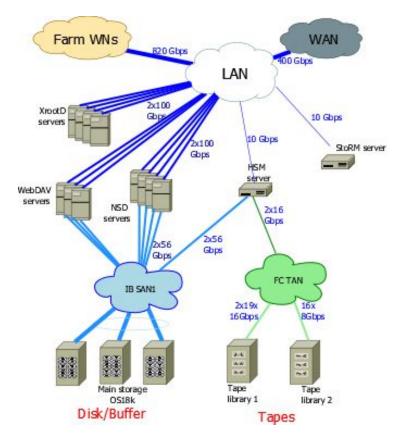
Two tape libraries:

- ORACLE SL8500
 - 10000 slots fully filled
 - 16 T10KD tape drives
 - 8.4 TB tape cartridges
 - 250 MB/s bandwidth per drive
- IBM TS4500
 - 6198 slots
 - 19 TS1160 tape drives
 - 20 TB tape cartridges
 - 400 MB/s bandwidth per drive
- 10k recalled files, 20k migrated files per day
- 20 TB recalled, 70 TB migrated per day

Team

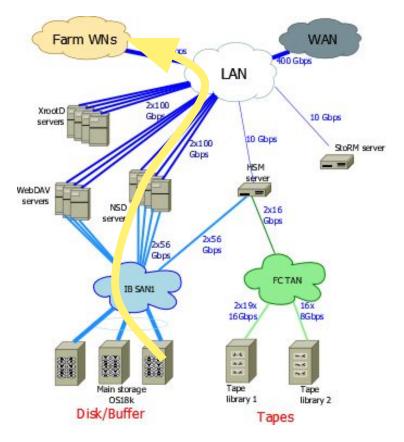
- Mission: provide and operate storage solutions and tools for data management and data transfer to experiments and users
- 8 people (1 group coordinator + 5 staff members + 2 research fellows)
- At least 2 people share operational know-how of each task/service/tool

Architectural choices

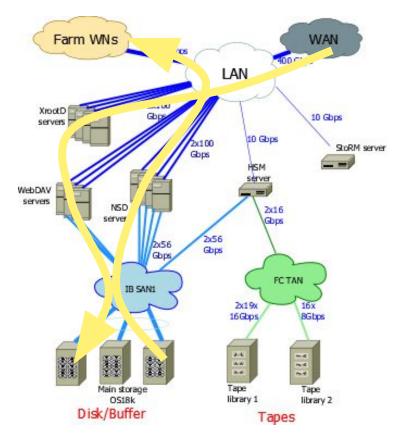


Architectural choice

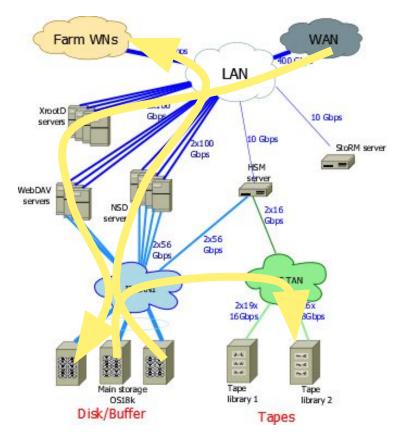
- Solution well consolidated over the years
- Storage servers:
 - SAN-based solution
 - Backend: Infiniband 56Gbps (FDR) and 100Gbps (EDR) and FiberChannel 16Gbps
 - Frontend: 2x100 GbE, 2x25 GbE and 4x10 GbE
- Software:
 - Parallel file system IBM Spectrum Scale (aka GPFS) as POSIX interface and backend for all data management and data transfer services
 - Interface to tape: IBM Spectrum Protect (aka TSM) + in-house optimization layer
 - Advantages:
 - performance
 - relying on stable and well supported sw
 - minimizing support effort



- A single big experiment has a dedicated cluster
- Dedicated servers:
 - 4 NSD servers
 - 3 StoRM WebDAV servers
 - 4 XrootD servers
 - 1 StoRM frontend/backend server (VM)
 - 1 HSM server
- > 1000 clients mounting filesystem



- A single big experiment has a dedicated cluster
- Dedicated servers:
 - 4 NSD servers
 - 3 StoRM WebDAV servers
 - 4 XrootD servers
 - 1 StoRM frontend/backend server (VM)
 - 1 HSM server
- > 1000 clients mounting filesystem



- A single big experiment has a dedicated cluster
- Dedicated servers:
 - 4 NSD servers
 - 3 StoRM WebDAV servers
 - 4 XrootD servers
 - 1 StoRM frontend/backend server (VM)
 - 1 HSM server
- > 1000 clients mounting filesystem

- A single big experiment has a dedicated cluster
- Dedicated servers:
 - 4 NSD servers
 - 3 StoRM WebDAV servers
 - 4 XrootD servers
 - 1 StoRM frontend/backend server (VM)
 - 1 HSM server
- > 1000 clients mounting filesystem

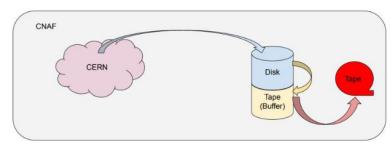
Data management services: StoRM

- SW (middleware) mainly in the hands of experiments or small groups of developers (3-5 people)
 - Very specific, far from being industry-standard
- CNAF is a StoRM site (tape support via our HSM solution GEMSS)
 - A dedicated StoRM endpoint for each of ATLAS, CMS, LHCb; two endpoints shared among the (many) other VOs
 - Each StoRM endpoint has a dedicated pool of StoRM WebDAV transfer nodes (14 in total)
 - GridFTP transfer nodes are still there (14 in total)
 - StoRM developers are working at the WLCG Tape REST API, a common http rest interface allowing clients to manage access to files stored on tape (and to ultimately replace the SRM protocol)

Data access

Data access

- Several computing models to cope with
 - Experiment-driven (managed) vs user-driven (unmanaged)
 - Different storage usage, different requirements, different solutions
 - POSIX access (mainly read) from the WNs and the UIs
 - Heterogeneous protocols for data transfer
 - gridftp (w/ and wo/ srm), xrootd, https (w/ and wo/ srm)
 - Caches of various flavours
 - Xrootd proxy/caching proxy in support of the HPC datacenter integration: jobs running in Marconi (CINECA) access the full xroot federation without external networking connectivity
 - StashCache for Virgo-Ligo, using CVMFS "external-data" feature
 - Different auth/z methods
 - Digital certificates, VOs and VOMS proxies, token-based

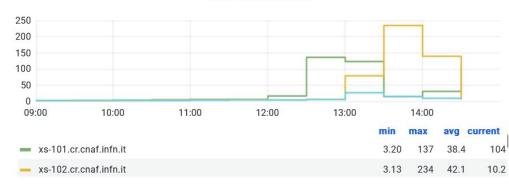

Data transfer protocols: GridFTP protocol replacement

- In 2017, Globus announced they would stop supporting Globus Toolkit (end-of-life targeted for 2022)
- WLCG uses two major features from the Globus toolkit:
 - GridFTP, and the DOMA working group (<u>DOMA TPC</u>) investigated alternatives for bulk transfers across WLCG sites
 - All storage elements to support <u>WebDAV</u>- or <u>XrootD</u>-based TPCs
 - No plans to support XrootD-TPC at INFN-T1, we provide support for HTTP-TPC with StoRM WebDAV
 - GSI authentication, which is being transitioned to tokens.
- The HTTP-TPC transition is most advanced, and should be completed "before Run3" (quoting DOMA BDT 16/2/2022)

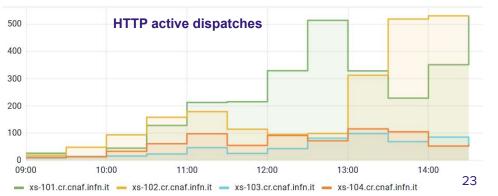
GridFTP transitioned to HTTPS

- The 2021 <u>Network Data Challenge</u> was carried out using HTTP-TPC (disk) as the final step of the commissioning process
 - INFN-T1 performed very well
- The 2022 <u>Tape Data Challenge</u> used srm+http
 - INFN-T1 achieved target rates
 - @INFN-T1, LHCb disk and buffer share hw and file system, thus LHCb workflow saturated StoRM WebDAV threads
 - Known bug on FTS management of DNS cache
 - Probably need load-balancing strategy for StoRM WebDAV endpoints

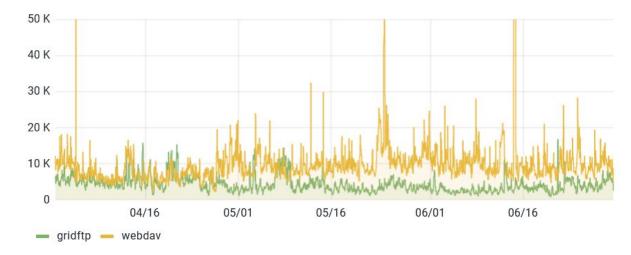
LHCb workflow (https://l.infn.it/n3)



However, GridFTP still here :-(


LHC experiments are not gsiftp-free yet:

- Mainly traffic from T2s
- But also from WNs (LHCb)
- Reserving one endpoint to GridFTP and the other to https seems to increase significantly the efficiency of the transfers


GridFTP connections

However, GridFTP still here :-(

Number of transferred files - every 1 hour

No-LHC experiments still rely heavily on gsiftp

Data transfer protocols: XrootD

- ALICE has always performed data access using XrootD
 - Alice XrootD installation at INFN-T1 is specific and optimized to work on top of General Parallel File System (GPFS, by IBM).
 - A specific plugin was developed @CNAF to manage tape recalls
- CMS uses an XrootD federation
 - INFN-T1 hosts national and local redirectors, plus several servers
- ATLAS and LHCb use it sparingly for streaming data access
- Other experiments use dedicated XrootD instances, e.g. AMS, DAMPE, JUNO, PADME
- VIRGO uses a Stashcache instance to read data from /cvmfs
- They all add up to 40 XrootD servers

Future challenges and conclusions

Future challenges

- Transition gridftp → http still ongoing
- Transition towards token-based auth/z ongoing, following DOMA
 - "By March 2022 all storage services to provide support for tokens including operations for which currently SRM is used (tape)"
 - Our storage services support token-based auth/z with StoRM WebDAV
 - Used by several no-LHC experiments
- CEPH is being considered as alternative for Disk-Only solution (i.e. without tape backend)
 - A dedicated file system was deployed and is used by ALICE
- CNAF data center has to cope with the next challenges of science
 - \circ Resources x2 by 2025, and even more (x10) from 2027 (HL-LHC)

Conclusions

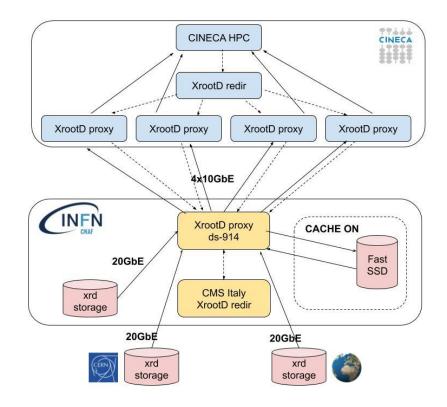
- Storage operations @INFN-T1 are proceeding smoothly
- We are supporting ongoing transitions to HTTP and token-based auth/z
 - We are currently deploying (too) many services, and we hope this ecosystem gets simpler
- We are actively planning and working for the transition (!) of the Data Center to the Tecnopolo

Thanks!

Backup slides

Data transfer services: issues with XrootD

- Threads saturated unevenly among servers with load increasing
 - Disable *sendfile()* for read requests setting *xrootd.async nosf ()* greatly alleviated the load issues, and allowed us to remove limitation on *max threads*
 - Need to manually set the default value *max threads* (2048)
 - On GPFS side
 - Increase pagepool to 16GB
 - Separate NSD from XrootD servers
- Still, it happens that threads saturate to the maximum value while xrootd makes no traffic and server load is very low
 - A restart of the service solves the issue
 - Currently investigating this with the help of colleagues @CERN


Supporting INFN T1 extension to an HPC system

- Since 2015 CNAF has started a R&D program for the utilization of remote CPU resources to extend the data center beyond its premises
- PRACE Project Access to LHC Italy community for using the nodes from the CINECA Marconi KNL partition (3600 nodes, 68x4 cores per node, 96 GB RAM)
 - The nodes don't have external network connectivity. The key issue is then remote access to data.
 - This limitation has been solved by enabling external networking to CNAF and CERN.

Supporting INFN T1 extension to an HPC system

- An XrootD proxy installed at CNAF makes the full XrootD federation visible to CMS, via an Xcache setup (caching also possible).
- With such a setup (+ CVMFS and Singularity on the nodes), the experiment workflows can be executed on KNL Marconi with only limitation in uplink between A2 and CNAF Storage

