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Motivation
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➔ Background modelling is one of the main challenges in particle physics analyses
➔

➔ Common techniques of background modelling:
◆ MC simulation:

● Not always possible to model background with sufficient accuracy 
● Often computationally costly to produce large samples → significant 

statistical uncertainties 
◆ Parametric Models:

● Does the true shape belong to the family of curves parametrised by the 
chosen function?
○ Taken into account as “spurious signal” systematic uncertainty  [1, 2]
○ Discrete profiling of an ensemble of parametric forms [3, 4, 5]
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➔ Non-parametric data-driven background modelling:
1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
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Today will present 2 
implementations of the method



Ancestral Sampling
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Case Study: H→Φγ
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➔ H→φ(K+K-)γ  has potential to probe Higgs coupling to strange quark
◆ Distinct experimental signature: pair of collimated high-pT isolated 

tracks recoiling against isolated photon
◆ Main background : photon + jet and dijet 

● difficult to model accurately using MC - ideal use case for method
● photon + jet MC sample used to exemplify model application

Higgsγ

Μ

ΔΦ(Μ
,γ)>π/2

pT(γ) > 35 GeV

1.012 ≤ mΦ ≤ 1.028 GeV

pT(trk) > 20 GeV

pT(trk) > 15 GeV

Track-based 
Isolation

arXiv:1712.02758

https://arxiv.org/abs/1712.02758


Building the model for H→Φγ
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1. Relax pT(M) and Iso(M) requirements 

Region pT(M) cut Iso(M) cut

GR x x

VR1 ✓ x

VR2 x ✓

SR ✓ ✓

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection



Building the model for H→Φγ
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2. Build PDFs of relevant kinematic and isolation variables in generation region  - we need the φ 
and γ 4-momentum vectors to ultimately obtain m(φγ)  + Iso(φ)
◆ 1D, 2D and 3D histograms to be sampled from in generation step
◆ only most important correlations are explicitly described

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection



Building the model for H→Φγ
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3. Sample from PDFs and construct pseudo-candidates
◆ each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an 

associated Φ isolation variable

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

φ = (pT, η, Φ, m)
+

γ = (pT, η, Φ, m=0)
 

Iso(φ)

Higgs pseudo
candidates
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Building the model for H→Φγ
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4. Apply pT(M) and Iso(M) 
requirements to sample of 
pseudo-candidates
◆ obtain PDF of m(φγ) for 

statistical analysis in Signal 
and Validation Regions

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection



Implementation in Statistical Analysis
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➔ Systematic uncertainties are provided through variations of the nominal PDFs
◆ selected to capture different modes of potential deformations of the background shape

➔ Maximum likelihood fit to invariant mass
◆ each variation controlled by a nuisance parameter -  directly constrained by data in fit



Conditional Generative 
Adversarial Networks
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Generative Adversarial Networks
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➔ Challenge for ancestral sampling: 
◆ application in multivariate analyses
◆ signal region blinding

➔ Generalisation of method: use GANs trained on data to produce background model
◆ Generator - learns generative model from data sample
◆ Discriminator - simultaneously trained to discriminate the generator output from data



Conditional Generative Adversarial Networks
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➔ Possible signal contamination in training data:
◆ Condition GAN (cGAN) on a blinding variable, allowing SR to be blinded during training - cGAN 

extrapolates prediction into SR



Case Study: H→Za
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➔ Light pseudo-scalars produced in Higgs decays feature in BSM theories 
like two-Higgs-doublet model and the 2HDM with additional scalar singlet

➔

➔ Search for H→Z(ll)+a, with a→hadrons:
◆ Main background: Z + jets 
◆ background discrimination relies on MVA techniques, using jet 

substructure variables
◆ ideal case study for implementation of background modelling using 

cGANs
● systematics arising by limited stats in MC simulation 

(arXiv:2004.01678)
● use of MVA techniques makes it impractical to use ancestral 

sampling
●

➔ Z + jets MC sample used to exemplify model application

arXiv:2004.01678 

https://arxiv.org/abs/2004.01678
https://arxiv.org/abs/2004.01678


Building the model for H→Za
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1. Remove MLP-based selection
◆ & blind signal region to avoid signal contamination

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

Use mµµj as blinding variable

123 GeV ≤ mµµj≤135 GeV blinded 



Building the model for H→Za
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Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

2. cGans trained using blinded data
◆ learn generative model of the conditional probability distribution of the 

data, given value of blinding variable
◆ Use ensemble of cGANs and take average:

●  100 cGANs trained, 5 best based on χ2 metric kept for analysis

Generator and discriminator:
● 5 layers x 256 hidden nodes with leaky 

ReLU activation function
● binary cross entropy loss function and 

L2 regularisation



Building the model for H→Za
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Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

3. Input inclusive distribution of the 
conditioning variable into cGAN:
◆ cGAN extrapolates the conditional 

generative model into signal region
◆ obtain prediction of MLP input 

variables

mµµj  sidebands



Building the model for H→Za
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Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

3. Input inclusive distribution of the 
conditioning variable into cGAN:
◆ cGAN extrapolates the conditional 

generative model into signal region
◆ obtain prediction of MLP input 

variables

mµµj  SR
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Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

4. Apply MLP selection to pseudo-candidates sample
◆ obtain PDF of mµµj in SR for statistical 

analysis



Implementation in Statistical Analysis
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➔ Systematic uncertainties are provided through shape variations:
◆ Differences between ensemble and individual cGANs
◆ Principal component analysis performed to orthogonalise differences

➔ Maximum likelihood fit to Higgs invariant mass
◆ each variation controlled by a nuisance parameter -  directly constrained by 

data in fit



Summary
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➔ A novel non-parametric, data-driven background modelling technique was presented
◆ Addresses typical shortcomings of often employed background modelling techniques
◆ Dataset from a relaxed event selection to create a model based on conditional probabilities
◆ Two distinct ways of building the conditional PDF:

arXiv:2112.00650 

             Ancestral sampling

● Sample from histograms of relevant variables in data, built 
with respect to most important correlations 

● Already used in multiple analysis! [Phys. Rev. Lett. 114 (2015) 
121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. 
B 786 (2018) 134]

         Conditional Generative Adversarial Networks

● Generalisation of ancestral sampling
● Use GANs trained on data to produce background model
● Condition GAN (cGAN) on a blinding variable, allowing SR to 

be blinded during training

https://arxiv.org/abs/2112.00650


BACK-UP
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Building the model for H→Φγ
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Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

γ+jet MC Model



Ancestral Sampling
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injection of signal at 
10.4% of background

increase of 
background by 

2%

➔ Background model is robust under signal contamination
◆ Signal Injection tests to evaluate robustness


