W7 ICHEP 2022

% BOLOGNA

Developments In software
performance and portability
for Madgraph5 aMC@NLO

Laurence Field

Taylor Childers Stephan Hageboeck Olivier Mattelaer
Walter Hopkins Stefan Roiser :
Nathan Nichols David Smith UCL ;-
Andrea Valassi Université
Argonne & iliate \CY
c\ER/W
NS

ICHEP, Bologna, 8t July 2022
https://agenda.infn.it/event/28874/contributions/169193

https://agenda.infn.it/event/28874/contributions/169193

Outline

* Introduction
» Results and outlook in three main areas of development (cudacpp, portability frameworks, Madevent)

* Conclusions

= /
TR
OV
4)%
Vel

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne o

NNNNNNNN LABORATORY N

Motivation: Monte Carlo Event Generators in WLCG computing

« LHC computing needs are predicted to outpace resource growth on HL-LHC timescales
—Need R&D to improve software efficiency and port it to new resources, such as GPUs at HPC centers

ATLAS Preliminary. 2028 CPU resource needs
C fa

F ATLAS Prellmlnary

Run 4 extrapolatlons CPU 24

100 CPU resource needs]

o
[=1
@
I
=)
c
S]
= 80— 2018 estimates: x|
E * MC fast calo Slm + standard reco :
] F e y--
2 !
S gof .
e [:
% t-— Flat budget model ;.
o, . ol
= (+20%/year) P
g a0 r o -
& [w re
L .‘
20— ‘]

3018 2020 2022 2024 2026 2028 2030 2032

ATLAS computing and software update Year

James Catmore (Qslo/CERN), Alessandro Di Girolamo (CERN)

WLCG meeting with LHCC referees, Feb. 2020

G_III|

LEONARDO

https://doi.org/10.1007/s41781-021-00055-1

Computing and Software for Big Science (2021) 5:12
https://doi.org/10.1007/541781-021-00055-1

ORIGINAL ARTICLE 4')

Challenges in Monte Carlo Event Generator Software
for High-Luminosity LHC

The HSF Physics Event Generator WG - Andrea Valassi' @ - Efe Yazgan®(® - Josh McFayden'>#{® . Simone Amoroso® -
Joshua Bendavid' - Andy Buckley® - Matteo Cacciari’*® - Taylor Childers® - Vitaliano Ciulli'® - Rikkert Frederix'" -
Stefano Frixione'? - Francesco Giuli'? - Alexander Grohsjean® - Christian Giitschow'* - Stefan Hoche'® -

Walter Hopkins® - Philip liten'®'” . Dmitri Konstantinov'® - Frank Krauss'® - Qiang Li?° - Leif Lénnblad'" -

Fabio Maltoni?"?2 . Michelangelo Mangano' - Zach Marshall® - Olivier Mattelaer?? - Javier Fernandez Menendez?* -
Stephen Mrenna'® - Servesh Muralidharan'?® - Tobias Neumann'*?* . Simon Platzer? - Stefan Prestel'’ -

Stefan Roiser' - Marek Schonherr'? - Holger Schulz'” - Markus Schulz' - Elizabeth Sexton-Kennedy'® -

Frank Siegert?® - Andrzej Si6dmok?’ - Graeme A. Stewart'

Received: 18 May 2020 / Accepted: 2 March 2021/ Published online: 22 May 2021

« MC generators, the essential 15t step in simulation, use 10-20% of ATLAS/CMS WLCG CPU budget
—Many ways to speed them up — see the HEP Software Foundation (HSF) Generator WG review
—MC generators are ideal candidates to exploit data parallelism in GPUs (SIMT) and in vector CPUs (SIMD)

Software performance and portability in Madgraph5_aMC@NLO

ICHEP, Bologna, 8 July 2022

Argonne & (& “5\\ Uc!‘ @)

NATIONAL LABORATORY

https://indico.cern.ch/event/877840/contributions/3698881/subcontributions/296412
https://doi.org/10.1007/s41781-021-00055-1

Madgraph5 aMC@NLO (MG5aMC)

* One of the workhorses for event generation in ATLAS and CMS!

PUBLISHED FOR SISSA BY) SPRINGER
RECEIVED: May 20, 2014
ACCEPTED: June 25, 2014
PuUBLISHED: July 17, 2014

q
-
il
iy

The automated computation of tree-level and
next-to-leading order differential cross sections, and

their matching to parton shower simulations F 4
& FORTRAN:
J. Alwall,® R. Frederix,® S. Frixione,? V. Hirschi,® F. Maltoni,? O. Mattelaer,¢ wH " RANMAR
H.-S. Shao,® T. Stelzer,” P. Torrielli’ and M. Zaro"* proton 1
b
https://doi.org/10.1007/JHEPQ07(2014)079 # FORTRAN:
MADEVENT
antiproton _
il
v MOMENTA
FORTRAN:
MATRIX1

« MG5aMC production version is in Fortran

MATRIX ELEMENTS

— Software outer shell: Madevent (random sampling, integration and event generation) Webh

— Software inner core: Matrix Element (ME) calculation code, automatically generated for each physics process
» Matrix Element calculations take 95%+ of the CPU time for complex processes (e.g. gg—ttggg)

(e UCL /3y
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonneﬁ \ly\‘ Univerie { @

https://doi.org/10.1007/JHEP07(2014)079

MG5aMC and the madgraph4gpu project

* madgraph4gpu: speed up Matrix Element calculation in MG5aMC on GPUs and vector CPUs
— Collaboration of theoretical/experimental physicists with software engineers — born in the HSF generator WG
—Previous results for ‘cudacpp’ (C++ vectorization on CPUs, CUDA on Nvidia GPUs) were shown at vCHEP2021

EPJ Web of Conferences 251, 03045 (2021) https://doi.org/10.1051/epjconf/202125103045
CHEP 2021

Design and engineering of a simplified workflow execution
for the MG5aMC event generator on GPUs and vector CPUs

Andrea Valassi'**, Stefun Roiser'", Olivier Mattelaer, and Stephan Hageboeck'
!CERN, IT-SC group, Geneva, Switzerland

2Université Catholique de Louvain, Belgium

https://doi.org/10.1051/epjconf/202125103045

* New progress since May 2021 has been mainly in three areas of development:
(1) Not only hardcoded e*e~—pu*u™: full code generation in cudacpp, performance for more complex processes
(2) Not only cudacpp: add implementations in Alpaka, Kokkos, Sycl also for AMD/Intel GPUs
Goal: gain experience for the HEP software community on the usefulness of portability frameworks (PFs)
(3) Not only a standalone application: integrate CUDA/C++ MEs into Madevent (cross sections, event generation)
Goal: first release of MG5aMC for LO event generation in ATLAS/CMS (CPU SIMD speedups and GPU port)

(e UCL /3y
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne v \iy\‘ Universt @

NNNNNNNN LABORATORY

https://doi.org/10.1051/epjconf/202125103045

MC event generators are a great fit for GPUs and vector CPUS!

* Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

g

* From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING

INPUT 0@

SAME CALCULATION
ON DIFFERENT DATA!

Event generators*
(before ME calculation):
- MC integration
(cross sections)
- MC generation
(event samples)

OUTPUT

[& Lockstep processing
Good for SIMT/SIMD

*NB: the CPU-intensive ME calculation comes
before PS, fragmentation, detector simulation

INPUT

MC DECISIONS @

Detector simulation (Geant4)

- Particle/matter interaction
(when? how?)

- Particle decays (when?)

3 _

OUTPUT

DECISION

Event generators*

(after ME calculation):
Bad for SIMT/SIMD | - MC unweighting (keep/reject)
Parton showers (PS)
- Fragmentation and decays

Software performance and portability in Madgraph5_aMC@NLO

(i UCL 4y
CERN) — H A
Argonne & () wnee(@)
NNNNNNNN LABORATORY ~Z A\ cath R

/ \ delo S

ICHEP, Bologna, 8 July 2022

oot | oume | e | Matrix Element (ME) calculation
e | G | taee | 1IN cudacpp: results

1-core Standalone C++

(all numbers for one single CPU thread)

12sbitssEn2 its. | Ttae | (1) First area of development: MEs in “cudacpp”

1(X O‘;t ele Oits) Single code base (#ifdef's) for C++ on CPUs and CUDA on Nvidia GPUs
- ++ ;
Ay L.06E4 21564 | SIMD vectorization on CPUs through Compiler Vector Extensions in C++

(x4.4) (x9.0)

(x4 doubles, x8 floats)
1-core Standalone C++

) i 1.15E4 2.28E4 . .

2Tl LY O12 (x4.8) (x9.5) Main new results since vVCHEP2021:
x4 doubles, x8 floats
1-core Standalone C++ i

512-bit AVX512 « Backport to code generation (test more complex processes)
X8 doubles xie floats —speedups seen for ee_mumu now also ~confirmed for gg_ttgg

Intel Gold 6148 CPU (Juwels Cluster HPC) —but GPU speedups decrease a bit (higher "register pressure")

Better AVX512/zmm results than on Intel Silver 4216 at CERN
(Gold 6148 has two FMA units, Silver 4216 has one FMA unit)

» Achieve full theoretically possible SIMD speedup on CPUs

mplementation MEs/second | MEs/second —x8 double, x16 float from AVX512 on high-end Intel CPUs
(gg—ttgg) Double Float
1-core Standalone C++ 1.84E3 1.80E3 . .
scalar (=1.00) (x0.98) » New features added for MadEvent integration

Standalone CUDA (this slide shows numbers from the standalone test application;
NVidia V100S-PCIE-32GB see the final slides for performance numbers within madevent)

TFlops*: 7.1 FP64, 14.1 FP32)

NVidia V100 GPU + Intel Silver 4216 CPU (CERN)

. A D () UCLi
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 rgonne & \J Univeri | @

Portability Frameworks (PFs)

(2) Second area of development: MEs on PFs

* PFs allow writing algorithms once and running on many architectures with some hardware-specific optimizations

Lkokkos alfaka GyeL.

« CUDA only runs on NVidia GPUs, while Kokkos, Alpaka and Sycl[Intel] also run on AMD and Intel GPUs

<X

NVIDIA.

)y UCL /3y
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne -y N o (B

NNNNNNNN LABORATORY

8

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md

ME calculation in PFs: GPU results (Nvidia A100)

Throughput scaling (threads, blocks) for a complex gg—ttgg process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

« Good news 1: all four implementations look similar for Nvidia in gg_ttgg!

—The benefit of direct CUDA over a PF is limited, if any at all
NVIDIAA100 — gg_ttgg

L . . . @® svaol "TERE BN
NB: focus on gg_ttgg which is computationally intensive! A Kokkos ®
i | CUDA ®
In simpler processes like ee_mumu, performance is more affected by data 8= Apaka ~
copies, memory access or kernel launching overheads (and the observed é 21054 -
©
SYCL implementation is faster than the CUDA one - to be understood) U;‘j 5
=3 a
C =
=Q
104_
(99_ttgg) 16k threads _
block 256
TAAA AL YIRS
d

En passant, keep in mind this for later: you need at least 16k “events per GPU grid” to fill up a V100 or A100 with gg_ttgg+

— Simpler processes need even more, e.g. 500k for ee_mumu

ICHEP, Bologna, 8 July 2022

Software performance and portability in Madgraph5_aMC@NLO

ME calculation in PFs: GPU results (Nvidia, Intel, AMD)

Maximum throughput (plateau of scaling plot on the previous slide) for a complex gg—ttgg process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

» Good news 1: all four implementations look similar on Nvidia in gg_ttgg! o
—The benefit of direct CUDA over a PF is limited, if any at all | ¢ [s mm 0i0r = cwgg‘ giaka

=
()
w

Matrix Elements
Per Second [s71]

cuda-11.6.2
cuda-11.6.2
cuda-11.6.2
cuda-11.6.2

rocm-4.5.2
rocm-5.1.3
rocm-4.5.2
rocm-5.1.3

* Good news 2: PFs also work on AMD and Intel GPUS!
—Out of the box, with a single implementation

(There is no Alpaka on Intel in the plots because we use Cupla: we should move to using native Alpaka)

— PFs also run out of the box on CPUs (performance under investigation)

Xe-HP is a software development vehicle for functional testing only - currently used at Argonne and other customer sites to prepare their code for future Intel data centre GPUs

| UCL /3,
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonneﬁ uumé{\f. 10

Matrix element integration in MadEvent: overview

(3) Third area of development: replace Fortran by cudacpp MEs in Madevent (keep the user interface!)

Linking Fortran and C++ has been easy. As expected, the two main issues have been, instead:
—1. Moving Madevent from single-event to many-event (need 16k+ per GPU grid = huge arrays in CPU memory!)
—2. Debugging the issues caused by hidden inputs and outputs, largely coming from Fortran common blocks

FORTRAN:
RANMAR

|

FORTRAN:
MADEVENT

MOMENTA

MATRIX ELEMENTS

W

REENGINEER MADEVENT

y

ADAPT CUDACPP

SINGLE event
(momenta)

COMMON
BLOCKS
(hidden inputs
and outputs?)

Software performance and portability in Madgraph5_aMC@NLO

MANY events
(momenta)

PURE
FUNCTION
(clear inputs
and outputs)

FORTRAN:
RANMAR

}

FORTRAN:

MOMENTA

CUDA / C++:
SIGMAKIN

MATRIX ELEMENTS

W

ICHEP, Bologna, 8 July 2022

Argonne &

@ ()

1A Universite g

A ":Ja';lh i\;;’, 11
/7 \ delo S

Matrix element integration in MadEvent: results

» Functional results (Madevent with Fortran MEs vs CUDA/C++ MEs, using the same random seeds)
—Cross section calculation: done! (Same cross section within ~E-14 relative accuracy)
—Unweighted event generation: almost done! (Same LHE output files, except for missing color/helicity)

« Performance results = Total time = Madevent time (scalar, sequential) + ME time (vector, parallel)
—The overall speedup is limited by the incompressible scalar component (we need to reduce that too!)
—Amdahl!’s law: if parallel fraction is initially p, maximum speedup is 1/(1-p)

Intel Gold 6148 CPU (Juwels Cluster HPC)

D
Implementation Evts/second | MEs/second o
(99— ttgg) et dteny | WIES Srl Implementation Evts/second | MEs/second E 8
1-core MadEvent Fortran 1.96E3 2.12E3 (99— ttggg) full workflow | MEs only O] N =
_ i o
scalar (F1.00) (£1.00 1-core MadEvent Fortran 7.01E1 7.37E1 SR
1-core Standalone C++ 1.72E3 1.85E3 scalar (=1.00) (=1.00) > g (L'j
el)) Standalone CUDA 1.17E3 7.39E3 So
; NVidia V100S-PCIE-32GB 16.7 1 = =
1-core Sta.ndalone C++ 3.56E3 4.08E3 idia V100S-PCIE-32G x16 x100 S
128-hit SSE4.2 (xL8) (xL.9) S e
(x2 doubles, x4 floats) ' ' -
1-core Star_1da|one C++ 6.72E3 8 80E3
256-bit AVX2 (3.4) (x4.2) —
(x4 doubles, x8 floats) ' ' Summary of performance within madevent so far:
1-core Standalone C++ - on CPU: ~x8 for MEs alone, ~x5 for madevent+MEs
w256 bit” AVX512 7.08E3 9.41E3
(x4 doubles, x8 floats) (x3.6) (x4.4) - on GPU: ~x100-300 for MEs alone, ~x20 for madevent+MESs
1-core Standalone C++
512-bit AVX512 -
(x8 doubles, x16 floats) ICHEP, Bologna, 8 July 2022 Argonne & U' UC’J@‘ 12

AAAAAAAAAAAAAAAAA catholiqu
e Louvail

https://en.wikipedia.org/wiki/Amdahl%27s_law

Matrix element integration in MadEvent: detailed results (CPU)

O mad (81952 MESs) mad mad sa/brdg

o

e

§ ggttgg [sec] tot = mad + MEs [TOT/sec] [MEs/sec] [MEs/sec

5 -

(U)) FORTRAN 41.82 = 3.23 + 38.6@ 2.12e+03 (= 1.8)

2 CPP/none 47.78 = 3.56 + 44.22 1.85e+83 (x ©.9)

>

= CPP/ssed 23.84 = 2.97 + 20.07 4.68e+83 (x 1.9)

E CPP/avx2 12.19 = 2.88 + 9.32 8.80e+03 (x 4.2)

@)

o CPP/512y 11.57 = 2.86 + 8.71 9.41e+83 (x 4.4)

v

= CPP/512z 8.26 = 2.88 + 5.38 1.52e+84 (x 7.2)

; N

et TIME Total =

T TIME THROUGHPUT

= MadEvent (scalar) MEs (parallel) MEs OUG

a + MEs (parallel . THROUGHPUT
(P) THROUGHPUT (within madevent) MEs

MadEvent + MEs L
TIME (within standalone

Software performance and portability in Madgraph5_aMC@NLO

within madevent
MadEvent (scalar) ()

ICHEP, Bologna, 8 July 2022

test application)

Y /2
Argonne & ()] Yek(d

H
NNNNNNNN LABORATORY

LT§
Université \ i 13
catholique %535
de Louvain \..f:

Matrix element integration in MadEvent: detailed results (GPU)

MadEvent (scalar)
1. REDUCE THIS TO
INCREASE SPEEDUP

7~

Z

na mad

L

O

N—r

) pottepp [zec] tot = mad + MEs

o

@)

© nevt/grid 8192
QN

< nevt total 96112
| -

O
=

0p) FORTRAN 1286.89 = B62.74 + 1223.35
ég CUDA/E192 77.86 = B4.87 + 12.19
PR e

2 nevt/grid

o

© nevt total

o

O ______________

—

> CUDA/ max

o TIME

=)

>

Z

Software performance and portability in Madgraph5_aMC@NLO

mad mad
[TOT/=ec [MEs/sec]
8192 2192
oe112 Se112
7.01e+81 (= 1.8) 7.27e+81 (= 1.8)
1.17e+82 (x16.7) 7.39e+832 (x188.)

ggttgg GPU MEs
speedup is lower than
eemumu (higher
register pressure)
3. SMALLER GPU
KERNELS TO
INCREASE SPEEDUP

ICHEP, Bologna, 8 July 2022

7.482+02 4— 8k events_
per GPU grid
16284
512732*1

0 230:02 4«—— 10K events
per GPU grid
2. INCREASE GPU
GRIDS (REDUCE
CPU MEMORY) TO
INCREASE SPEEDUP

Argonne &

NNNNNNNN LABORATORY

Outlook and main plans

» [madevent/functionality, Q3 2022] Alpha release for the experiments
—Add event-by-event random choice of color and helicity (same LHE files), check pdf, user parameters...

« [madevent/performance, end 20227?] Speed up GPU workflow (reduce madevent scalar overhead)
—One possible option: heterogenous workflow (madevent on many CPU cores, MEs on GPU)?

[madevent/performance, end 20227?] Speed up GPU MEs in madevent (allow larger GPU grids)
—This requires reducing the number of Fortran arrays in madevent (reduce CPU memory usage)

« [MEs/functionality, 2023] Add support for NLO (loops and matching to parton showers)

» [MEs/performance, 2023] Add “helicity recycling” (x2-3 extra speedup in CPU/GPU, now only in Fortran)
» [MEs/performance, 2023] Numerical precision studies: float (x2 extra speedup in CPU/GPU), fast math
» [MEs/performance, end 2022?] Try smaller GPU kernels, try Nvidia tensor cores for QCD color algebra

* [portability/performance/GPU, 20237?] HIP in cudacpp, detailed comparisons with PFs with newer code
« [portability/performance/CPU, 20237?] std::thread in cudacpp, detailed SIMD/MT comparisons with PFs

UCL /5
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne a \.) 3 @

AAAAAAAAAAAAAAAAAAA

15

Conclusions

« ALL Matrix Element Generators are perfect fits to exploit CPU vectorization/SIMD and GPUs
—Lockstep parallelism in MEGs much easier to exploit than in detector simulation (Geant4, stochastic branching)

 An alpha release of MG5aMC for LO with GPU ports and CPU speedups from SIMD is imminent
—Cross section calculation is ready; a few details to fix for unweighted event generation (random color/helicity...)

For the ME calculation alone, speedups ~x8 for CPUs and ~x300 for V100 GPUs have been observed
—Our performance on CPUs achieves the theoretical limit for SIMD vectorization: ~perfect lockstep processing

 For the full MadEvent+MEs, performance is limited by scalar processing in MadEvent (Amdahl's law)
—0On CPUs, an overall speedup ~x5 compared to Fortran has been achieved so far
—0On GPUs, the overall speedup is limited to ~x20 so far for processes where MEs "only" take up 95% of the time
— Speeding up the scalar processing in MadEvent is one of our next challenges (with large potential gains!)

There is potential for many additional speedups (single precision, helicity recycling, smaller kernels...)

Portability Frameworks work well for us - easier development with a single code for many GPU flavors
— Similar performance to direct CUDA on Nvidia GPUs - and also run out of the box on AMD and Intel GPUs

(e UCL /3y
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne Y \iy\‘ umﬁ 16

NNNNNNNN LABORATORY

Acknowledgements

» We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory
for System Evaluation (JLSE) at Argonne National Laboratory. This research used resources of the
Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

» We gratefully acknowledge the use (under PRACE proposal PRACE-DEV-2022D01-022) of the
JUWELS supercomputer and other computing resources provided and operated by the Julich
Supercomputing Centre at Forschungszentrum Jalich.

() UCL /3y
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne s Y \l,f i @ 17

NNNNNNNN LABORATORY N

BACKUP SLIDES

oy UCL /3

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 ArgOﬂﬂE-\) e {8

Code generation: from many “epochs” to a single evolving “epoch”

OLD MODEL
(2020- early 2021)

“epoch”

(start new

MADGRAPH

PRODUCE
oy (1)

INTEGRATE
UPSTREAM

PRODUCE
SAME

AUTO-GENERATED
CUDA/C++ CODE

Software performance and portability in Madgraph5_aMC@NLO

Now using upstream MG5AMC from |_\|EW MODEL
https://github.com/mg5amcnlo ! (since end 2021)

Code generation infrastructure
- Python framework and “cudacpp” plugin
- Fortran, C++, CUDA templates
- Post-generation patches (temporary...)

> (3) re-generate

Automatically generated code
- Fortran framework (Madevent)
- CUDA/C++ Matrix Elements

(1) develop on top of auto-generated code
(2) backport immediately to code generation infrastructure

UCL /;
ICHEP, Bologna, 8 July 2022 Argonne & m@ 19

lig!
de Louvain

https://github.com/mg5amcnlo/mg5amcnlo/tree/3.1.1_lo_vectorization

MG5aMC computational anatomy and data parallelism strategy

* In MC generators, the same function is used to compute the Matrix Element for many different events
—ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)
—Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

5
PSEUDO RANDOM Py
_ NUMBERS
ol ecosecee [\ 2]}
© T
izl
E PHASE SPACE =
% SAMPLING A2
= WY
'TSJ MOMENTA + optional event cuts
z \ (will need to repack data once) I = |
§ GPU Time I > I
0
SIMT CPU I A1 ‘ A2 ‘ A3 ‘ A4 I A+4
et SIMD ENEIEIEE || E
IA1+B1 ‘A2+B2‘A3+BB‘A4+B4I IA4+B4I
GPU SIMT (Single Instruction Multiple Threads) CPU SIMD (Single Instruction Multiple Data)
Lockstep: all threads in a warp follow the same branch Lockstep: same op for all data in a vector register
Minimum parallelism: 32 threads in a warp (NVidia) Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

P
I

- UCL /3
N m=@® 20

/

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne v

AAAAAAAAAAAAAAAAA

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Portability Frameworks (PFs)

(2) Second line of development: MEs on PFs

* PFs allow writing algorithms once and running on many
architectures with some hardware-specific optimizations

» CUDA code can only run on NVidia GPUs, while Kokkos,
Alpaka, and Sycl[Intel] codes can run on most hardware

 In “cudacpp’”, #ifdef directives separate code branches for
GPU and CPU code during compilation (but these are very
few: only kernel launching and memory access, not MES)

» With PFs, the algorithm is typically the same, but the
compilation occurs once per architecture type

* PFs often use templating to handle data types and hardware
configuration and function lambdas or pointers for passing
kernels (the cudacpp plugin has many of these, t00)

» PFs still require user to think about “host” vs “device”

Py
-

kokkos al™aka GYcL.

“cudacpp”’ example of compiler directives

540
541
542
543
544
545

rﬁdef __CUDACC__ \

#ifndef MGONGPU_NSIGHT_DEBUG

gProc::sigmaKin<<<gpublocks, gputhreads>>>(devMomenta.get(), devMEs.get()
#else

gProc::sigmaKin<<<gpublocks, gputhreads, ntpbMAXxsizeof(float)>>>(devMome
#endif

546 checkCuda(cudaPeekAtLastError());
547 \checkCuda(cudaDeviceSynchronize()): For GPU j
548 (#else
549 Proc::sigmaKin(hstMomenta.get(), hstMEs.get(), nevt);
550 #endif

Kokkos example of Templating & lambda
324 {
325 using member_type = typename Kokkos::TeamPolicy<Kokkos::DefaultExecut
326 Kokkos: :TeamPolicy<Kokkos::DefaultExecutionSpace> policy(league_size
327 Kokkos::parallel_for(__func__,policy,

KOKKOS_LAMBDA(member_type team_member){

328

Kokkos example of Memory Management

262 Kokkos: :View=fptypess*,Kokkos: :DefaultExecutionSpace> devMomenta(Kokkos::ViewAllocateWithoutInitializing("devMomenta"),nevt,npar,npd4);

263 auto hstMomenta = Kokkos::create mirror_view(devMomenta);

Software performance and portability in Madgraph5_aMC@NLO

ICHEP, Bologna, 8 July 2022

=y UCL /&
Argonne & " a@; 21
deLou:Ial;ﬁ N

NNNNNNNN LABORATORY

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/cudacpp/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check_sa.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/CPPProcess.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check.cpp

ME calculation in PFs: GPU results (Nvidia A100)

Throughput scaling (threads, blocks) for a complex gg—ttgg process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

« Good news 1: all four implementations look similar for Nvidia in gg_ttgg!

—The benefit of direct CUDA over a PF is limited, if any at all

NB: focus on gg_ttgg which is computationally intensive!
In simpler processes like ee_mumu, performance is more affected by data
copies, memory access or kernel launching overheads (and the observed

SYCL implementation is faster than the CUDA one - to be understood)

NVIDIA A100 — ee_mumu

1010
@® svcL o 'Y]
A Kokkos [] .[: e
— 10/ CUDA .‘AAAAAA'A
2 N Alpaka ’ 2 Y
@ M
52 |
W g 10° 4
=3 bt
5%)
@
Za g
(eemumu) 500k $ret - 256
10° L = N S S S P S T S S R
R L DR o R

Total Threads Launched

NVIDIAA100 — gg_ttgg

@ svcu "TERE BN
A Kokkos ® ﬂ
_] CUDA
%Tm : Alpaka i
;_.10 4
52 .
% 8 &
% &
=7
104_
(gg_ttgg) 16k threads __
block =256
TPV TV AT IR A ATAA
d

En passant, keep in mind this for later: you need at least 16k “events per GPU grid” to fill up a V100 or A100 with gg_ttgg+

— Simpler processes need even more, e.g. 500k for ee_mumu

Software performance and portability in Madgraph5_aMC@NLO

ICHEP, Bologna, 8 July 2022

Argonne & ()
7

NNNNNNNN LABORATORY

ME calculation in PFs: CPU results (preliminary! need systematic study)

Maximum throughput for five processes, from simple (e*e™—u*u~) to more complex (gg—ttggg)
(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

 CPUs have two very different parallelisms we can exploit:
skylake_8180 —Many floats/doubles per vector register: vectorization (SIMD)
= ios —Many physical/virtual cores: multi-threading (or many processes)

OpenMP
Fortran

= e
o N
:) :

* NB: this plot is not comparing exactly apples to apples!
[I [I —Fortran: many copies of one process (MPI), no vectorization
%g)/ 09/ \,0)0) q

Matrix Elements
Per Second [571]

O N B Oy
—

ﬂ —Kokkos: internal multithreading? limited auto-vectorization?
& —SYCL: internal multithreading? limited auto-vectorization?
> >’ —cudacpp: OpenMP multithreading, explicit vectorization (CVE)

* NB: the OMP multithreading in the cudacpp plugin is known to be
suboptimal and will be reengineered (probably with std::thread instead)

PFs code runs out of the box also on CPUs
The cudacpp implementation handles both vectorization and threading at a much lower level

. A A (/‘B—' UCL /4,
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 rgonne @ _/\ @ 23

CPU throughput plots — SIMD + multi-core

» Two different throughput speedup factors multiply each other: SIMD and multi-core

— SIMD: fewer instructions per processor (e.g. in AVX2 each instruction applies to 4 doubles)
— Multi-core: many cores used in parallel (e.g. multiple jobs, multi-threading, multi-processing)

check.exe scalability on pmpe04 (2x 8-core 2,4GHz Haswell with 2x HT)

VARIOUS SIMD MODES

VARIOUS SIMD MODES

100

&0

60

40

0

80
No HT 2x HT | Overcommit No HT 2xHT | Overcommit
] : 70 :
MAXIMUM MEMORY: 64 GB
g el
: . m|%
/’.’ b 50
d //" ; SIMD mode tr
L : = none (| (O
5 40
J;'/ : *—e ssed =
] : e ayx2 || (W
I =300
Jf —
& n
; LY b1
o ?°f SIMD mode | |
*—e none
10 s ssed
—e avx2
: o '
0 10 20 30 40 50 0 10 20 30 a0 50

][THROUGHPUT (MEs per second) |

#CORES USED IN PARALLEL (#single-threaded job instances)

Prototype of OpenMP multi-threaded MG5aMC
Trivial coding (one pragmal), but suboptimal/unstable
Much lower memory (~proportional to number of jobs)
Will probably reimplement this using std::thread

Software performance and portability in Madgraph5_aMC@NLO

Multiple instances of single-threaded MG5aMC
Combine SIMD and multi-core speedup
Memory proportional to number of cores used

check.exe scalability on pmpe04 (2x 8-core 2.4GHz Haswell with 2x HT)

25 WITHOUT SIMD a0 WITHOUT SIMD
= NoHT & 2xHT ' Overcommit NoHT | 2xHT | Overcommit
: 70 : :
o ; MAXIMUM:MEMORY: 64 GB
§ Bl :
E]
—
S (S0
it i
= g 40
- #threads w ' #threads
s | per MT job | E * per MT job
o LsD|| |55 - © e 1(sT)
g -—e 2 7] H *-—e 2
= —e 4 o (20 -—e 4
[e) e B && §
% e 16 10 I *—e 16
— 8
= , ; P |ee 32 . ¢ 4 [°° R
— 0 10 20 30 40 50 — 0 10 20 30 40 50

#CORES USED IN PARALLEL (#threads per job x #jobs)

21

ICHEP, Bologna, 8 July 2022

Argonne & ()

[
NATIONAL LABORATORY ~Z_~

Université
catholique
deLouvain

o\

L)

N\

24

CUDA/C++: ME code example (complex number scalar/vector)

- CUDA:
- C++, no SIMD: scalar complex —
- C++, with SIMD: vector complex —

Formally the same code for three back-ends (cxtype sv represenis three types)

scalar complex —» (typedef thrust::complex<fptype> cxtype; // two doubles: RI
typedef std::complex<fptype> cxtype; // two doubles: RI
class cxtype_v { fptype v m_real, m_imag; // RRRRIIII (SOA

e
__device
void FFv1_@(const F:I.[]J // input: wavefunctioni[6]
const cxtype_sv F2[], // input: wavefunction2[6
]

const cxtype sv v3[], // input: wavefunction3[e
const cxtype COUP,
cxtype_sv* vertex) // output: amplitude
mgDebug(©, _ FUNCTION _);

const cxtype cI(@., 1.);

(Fi[a] = (F2[2] * (v3[2] - v3[5])
F1[5] * (F2[2] * (-v3[3]+]

- cI * TMP@;

(*vertex) = coup *
mgDebug(1, _ FUNCTION__);

return;

I IXXXXX 1. IXXXXX

2. FFV1PO_3
1. OXXXXX 1. OXXXXX

3. FFV1_0

const cxtype_sv TMP@ = (F1[2] * (F2[4] * (V3[2] + V3[5]) + F2[5] * (V3[3] + cI * (V3[4]))) +
(F1[3] * (F2[4] * (V3[3] - cI * (V3[4])) + F2[5] * (v3[2]

- F2[3] * (v3[3] + cI * (v3[4]))) +

eI * (v3[4])) + F2[3] * (v3[2] + V3[5])))));

- V3[s])) +

FFV1_0:

helicity amplitude

for the yutu vertex
Soon to be
automatically generated

“+” s the usual sum of two
(thrust/std) scalar complex,
or the user defined sum of
two vector complex

inline

{

}

cxtype_v operator+(const cxtype v& a, const cxtype v& b)

return cxmake(a.real() + b.real(), a.imag() + b.imag());

#ifdef _ clang_

C++ SIMD: gec / clang

. . #else
compiler vector extensions

#endif

typedef fptype fptype_v _ attribute__ ((ext_vector_type(neppV))); // RRRR

typedef fptype fptype_v _ attribute__ ((vector_size (neppV*sizeof(fptype)))); // RRRR

A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs

Software performance and portability in Madgraph5_aMC@NLO

VCHEP — 19 May 2021 13

ICHEP, Bologna, 8 July 2022

Argonne &

NATIONAL LABORATORY

UCL 5\
Uni':le]n:si;é H ;
bl o

25

CUDA: Profiling with NVidia NSight Compute — ncu

We regularly profile CUDA with ncu [both one-off studies and on-commit checks]
— Thanks to our mentors at the Sheffield GPU hackathon for getting us started!

We see no evidence of thread divergence [branch efficiency is 100%]

Our AOSOA layout ensures coalesced memory access [requests vs transactions]

We continuously monitor register pressure — decreasing it is one of our future goals
— We plan to split the ME computation into many kernels coordinated by CUDA Graphs

o
]

[
Current 4, 1, C : 128 NV SM Frequency: 1. : 7.0 Process:

NO_DIVERGENCE 5 aka W, 1, 1) z 120 NV SM Frequency: 1 : 7.0 Process:

Example: compare baseline implementation (100% branch efficiency) to a test with artificial divergence

\m A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 14

L

=~
/

\ UCL /”\
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne N g = \ nivrs |

NATIONAL LABORATORY
deLouvain /F

EVEN MORE BACKUP SLIDES

UCL
@ \

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonn63 \("\/‘ e

Argonne’s Joint Laboratory for System Evaluation (JLSE)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

NVidia A100 Nodes

AMD 7532 32c 2.4Ghz

DDR4-3200 256GB (8x32G DIMMs) RAM
1x Nvidia A100 40GB PCle 4.0

Mellanox ConnectX-6 EDR

Iris Nodes

Intel Xeon E3-1585 v5 CPU w/ Intel Iris Pro Graphics P580
4x 16GB DDR4-2666 SODIMMs (operating at DDR4-2133)
1GbE Onboard

NVidia V100 Nodes

4x NVIDIA Tesla V100 SXM2 w/32GB HBM2
2X Intel Xeon Gold 6152 CPU 22c 2.10GHz
192GB RAM DDR4-2666

Mellanox ConnectX-5 EDR

Arcticus Nodes

2x Intel development GPU card (Codename XeHP_SDV)

2x Intel(R) Xeon Gold 6336Y CPU (48 physical cores total) 2.4Ghz
256GB: 16x 16GB DDR4 @ 3200

Mellanox ConnectX-6: EDR InfiniBand (100 Gbps)

AMD MI100 Nodes

2x AMD EPYC 7543 32c (Milan)
4x AMD MI100 32GB GPUs
Infinity Fabric

512GB DDR4-3200

Software performance and portability in Madgraph5_aMC@NLO

Skylake Nodes

Intel S2600WF,

2x Intel Xeon Platinum 8180M CPU @
2.50GHz

768GB RAM

ICHEP, Bologna, 8 July 2022

AMD MI50 Nodes
Gigabyte G482-Z51

2x 7742 64c Rome

4x AMD MI50 32GB GPUs
Infinity Fabric

256GB DDR-3200 RAM

=—~an

Argonne & ()

NNNNNNNN LABORATORY N

https://www.jlse.anl.gov/hardware-under-development/

Build environment on JLSE (Sycl)

 We used JLSE systems to run all performance tests described here for Alpaka/Kokkos/Sycl

NVidia A100 Nodes
Intel oneAPI DPC++ (commit b9cb1d1247e2)

CUDA 11.6.2

NVidia V100 Nodes
Intel oneAPI DPC++ (commit b9cb1d1247e2)

CUDA 11.6.2

Software performance and portability in Madgraph5_aMC@NLO

Iris Nodes
Intel oneAPI DPC++ (NDA)

AMD MI100 Nodes
Intel oneAPI DPC++ (commit b9cb1d1247e?2)

ROCM 4.5.2

Arcticus Nodes
Intel oneAPI DPC++ (NDA)

Skylake Nodes

Intel oneAPI DPC++ (2021.4.0)

AMD MI50 Nodes
Intel oneAPI DPC++ (commit b9cb1d1247e?2)

ROCM 4.5.2

ICHEP, Bologna, 8 July 2022

(i) UCL Gy
Argonne & _/)* sz ()

NNNNNNNN LABORATORY

29

https://www.jlse.anl.gov/hardware-under-development/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md

Build environment on JLSE (Kokkos)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

NVidia A100 Nodes
Kokkos 3.5.00
CUDA 11.6.2
g++9.4.0

NVidia V100 Nodes
Kokkos 3.5.00
CUDA 11.6.2
g++9.4.0

Iris Nodes
Intel oneAPI DPC++ (NDA)
Kokkos (NDA)

Arcticus Nodes
Intel oneAPI DPC++ (NDA)
Kokkos (NDA)

Skylake Nodes

Intel oneAPI DPC++ (NDA)
Kokkos (NDA)

Software performance and portability in Madgraph5_aMC@NLO

ICHEP, Bologna, 8 July 2022

AMD MI100 Nodes
Kokkos 3.5.00
ROCM 4.5.2

AMD MI50 Nodes
Kokkos 3.5.00
ROCM 4.5.2

AAAAAAAAAAAAAAAAA

/

—
f

| %,
=)
\ \/ Université § i
= A catl i

\ de Py

30

https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://www.jlse.anl.gov/hardware-under-development/

Build environment on JLSE (Alpaka)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

NVidia A100 Nodes
Kokkos 3.5.00
CUDA 11.6.2
g++9.4.0

NVidia V100 Nodes
Kokkos 3.5.00
CUDA 11.6.2
g++9.4.0

Iris Nodes
Intel oneAPI DPC++ (NDA)
Kokkos (NDA)

Arcticus Nodes
Intel oneAPI DPC++ (NDA)
Kokkos (NDA)

Skylake Nodes

Intel oneAPI DPC++ (NDA)
Kokkos (NDA)

Software performance and portability in Madgraph5_aMC@NLO

ICHEP, Bologna, 8 July 2022

AMD MI100 Nodes
Kokkos 3.5.00
ROCM 4.5.2

AMD MI50 Nodes
Kokkos 3.5.00
ROCM 4.5.2

AAAAAAAAAAAAAAAAA

/

—
f

| %,
=)
\ \/ Université § i
= A catl i

\ de Py

31

https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://www.jlse.anl.gov/hardware-under-development/

Build environment on JLSE (Cuda and OpenMP)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

NVidia A100 Nodes
CUDA 11.6.2
g++9.4.0

NVidia V100 Nodes
CUDA 11.6.2
g++9.4.0

Skylake Nodes
g++11.3.0
OMP_NUM_THREADS=56

G UCL 3
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne N \l') =l)

AAAAAAAAAAAAAAAAA y

https://www.jlse.anl.gov/hardware-under-development/

What is a MC generator? A simplified computational anatomy

Monte Carlo sampling: randomly generate and process
MANY different events (“phase space points”) ‘ 0

This can be parallelized (SIMT/SIMD and multithreading)

For each event: MATRIX
L PSEUDO\RANDOM ELEMENT
1. NUMBERS GENERATOR
Output: random numbers T (e.g. MG5aMC)
) > PHASE SPACE
Input: random numbers . _ HADRONIZATION
Output: particle 4-momenta + optional event cuts GENERATORS
(e.g. PYTHIA)
3.
Input: particle 4-momenta : ST-I%R\;:E):S
Output: Matrix Element (ME) PHASE SPACE "
CPU BOTTLENECK SAMPLING WEIGHTED EVENTS HADRONISATION
OPTIMISATION {EVT i, W_i} e AND DECAY
A F - "
'-: "umu W i PARﬁCLE
%, MONTE CARLO MONTE CARLO i FILTERING
INTEGRATION UNWEIGHTING n ™
v DI:‘I'I‘E'CT OR
. . CROSS-SECTIONS etc... UNWEIGHTED EVENTS :: SIMULATION
(NB: Matrix Element is an (AVG W ,, MAX W ,) {EVT i, W_i=1} 0
element of the scattering matrix... (GEANT4)

almost no linear algebra here!)

A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs VCHEP - 19 May 2021 6
UCL f‘\
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonneo (u P \ t’::;:.?:ia A/

Code is auto-generated = lterative development process

» User chooses process, MG5aMC determines Feynman diagrams and generates code
— Currently Fortran (default), C++, or Python

— The more particles in the collision, the more Feynman diagrams and the more lines of code
>_<,< >_<<< >_<: >_<<< Process LOC functions function calls
o A L By B, e - - 776 8 16

>_<<< >_< >_<<< >‘< gg — 1t 839 10 %) Pouce

gg — tlg 1082 36 106

P i sl s gg — tigg 1985 222 786

"

-

 CODE
DEVELOP
ovtor S

Y ENGINEERED
CUDA/C++ CODE

start new INTEGRATE
S upstReaM RSN

PRODUCE
SAME

2)

» Goal: modify code-generating code (add CUDA, improve C++ backend)
— (1) Start simple: bootstrap with e*e—u* i (two diagrams, few lines of C++"cod
—(2,3) Add CUDA and improve C++, port upstream to Python meta-cod
— (4) Generate more complex LHC processes gg— tt, ttg, ttgg
— Add missing functionality, fix issues, improve performance, iterate

1. IXXXXX 1. IXXXXX

1. IXXXXX 1, IXXXXX

2. FFV1PO_3
1. OXXXXX 1. OXXXXX

AUTO-SENERATED
CUDA/C++ CODE

vCHEP - 19 May 2021 7

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022

Argonne &

NNNNNNNN LABORATORY

16

Gridpack to generate
100k gg—ttgg events |
(./run.sh 100000 1)

madevent (Fortran + external libraries)

Flame Graph

Python

MATRIX ELEMENT
calculation (Fortran)
-

Function: matrixi_ (786,239 samples, 42.00%)

A complex outer shell — with a CPU-intensive core: the ME

* To generate unweighted events in MG5aMC: execute a “gridpack”
— Python and bash scripts launching multiple instances of a Fortran application (madevent)
— A complex software infrastructure with many functionalities and a stable user interface

Reset Search

» Overall, the ME calculation is the CPU bottleneck (Fortran routine matrix1)

gg — tt g9 — ttgg 99 — ttggg
madevent 13G 470G 11T
matrixi 3.1G (23%) | 450G (96%) | 11T|(>99%)

‘\m A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs

N

Software performance and portability in Madgraph5_aMC@NLO

(Mattelaer, Ostrolenk — https.//arxiv.org/abs/2102.00773)

— Fraction of time spent in ME increases with number of events and process complexity-

vCHEP - 19 May 2021

ICHEP, Bologna, 8 July 2022

Argonne & (&)

NATIONAL LABORATORY

un | e C 35

Standalone CUDA/C++ application VS. MadEvent integration

» Our main focus: the ME calculation in CUDA/C++ (sigmakin kernel/function)
— Design approach: single source code for CUDA and C++ (>90% common code + #ifdef’s)

« Our workhorse: a simplified CUDA/C++ toy framework to feed events to the ME kernel
— All 3 main components on the GPU: random (cuRAND), sampling (RAMBO), ME (sigmakin)
— Fast, same results in GPU/CPU, but not good for production (RAMBO algorithm is inefficient)
— The results | present in this talk come from this framework

\dential random FORTRAN:
be
"o host GPU) LATER RANMAR
and device (GPU), (WIP) 00000000
allowing CUDA/C++ ey,
bitwise comparisons ¥
FORTRAN:
MADEVENT

» Our WIP: we plan to inject CUDA/C++ ME kernel into MadEvent/gridpack framework
— Fastest way to production — easier than rewriting MadEvent in CUDA/C++
— Validated code/infrastructure, same user interface — discussed with experiments at HSF WG

A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 9

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022

AAAAAAAAAAAAAAAAA

Event-level parallelism in practice — coding and #events
Easier to code for GPU SIMT than for CPU SIMD: CUDA code was faster to prototype

CUDA (GPU) implementation
—For SIMT, event loop is “orthogonal”: one thread = one event (GPU thread ID < event ID)
— For SIMT, SOA memory layouts are beneficial (coalesced access), but not strictly essential

C++ (CPU) implementation
— For SIMD, event loop must be the innermost loop (e.g. invert helicity and event loops)
— For SIMD, SOA memory layouts in the computational kernel are essential

To be efficient, CUDA needs O(10k)-O(1M) events in parallel— much more than C++!

— CUDA: lockstep within each warp (32 threads) + many warps in parallel to fill the GPU
— C++: lockstep within a vector register (2-8 doubles) + multi-threading or multi-processing

256 | | § 256 ~ Do @ YO

gg—tt — 5E5 MEs/s

THROUGHPUT
(Matri:_: Elements per seco nd)

128 128 wils 'g
e 654 L] s 64 ()]
. 32 ol @ wwooe] ¢ 32 E
Double precision v § Double precision '§
NVidia V100 . & 200000 NVidia V100 . o
(2560 FP64 cores) . (2560 FP64 cores) o
. 2 s %-.

c

<<

1

w

°
a

y - 5 o = - = = o 7 = © Ay x ¥ = M oy » = w0
L x 3 i 8 J -4 5 [7 & z % 8 = - 7 £ & gl 8 s & ¥ 2 O£ & 2
= A ¥ = s 5~ F B £ &

¥ & § & & § 5 2
- -

#EVENTS IN PARALLEL per iteration
#Threads Per Block * #Blocks

12

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne -y

NATIONAL LABORATORY

e |
(.L'l\’!\\'
\ j er:
=7/ catholique
‘\ deLouvain

CUDA: Host(CPU)-to/from-Device(GPU) data copy has a cost

* In our standalone application (all on GPU): momenta, weights, MEs D-to-H
— Plots below from Nvidia Nsight Systems: 12 iterations with 524k events in each iteration

« Eventually, MadEvent on CPU + MEs on GPU: momenta H-to-D; MEs D-to-H

» The time cost of data transfers is relatively high in simple processes

— ME calculation on GPU is fast (e.g. ete—p*p : 0.4ms ME calculation ~ 0.4ms ME copy)
* Note: our ME throughput numbers are (number of MEs) / (time for ME calculation + ME copy)

X (00 CucaFres (325,083 me] b vemal -ll lllllllllllllllllllleemsmt
CUDA A°1 (cudafree Sl @) SEIELRIRE] [([cdbeiceraset
ZOOM (ME calculation ~ ME copy)

NVTX 0d SGoodHel [1.477 ms]
CUDA AP1

eteHutu

3a SigmaiGn [353.256]

3 CpOTHmes [366.039 ps]

» But the time cost of data transfers is negligible in complex processes

— ME calculation on GPU is slow (e.g. gg—ttgg: 1000ms ME calculation >> 0.4ms ME copy)
— We expect that this will not be an issue for typical LHC collision processes

NVTX G | (PSR O = siomaiin (1| 32 Somakn [1

o e o oy gt o ot

"~ ZOOM (ME calculation >> ME cop) 0
- oS Eomdlins
—

CUDA AP1

CERN

\/"W A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 15

N

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne N

NATIONAL LABORATORY

a
o
253
£
Y43
56

CPU throughpl‘It reSUItS (2) Implementation MEs / second
Double, C++ — Scalar vs SIMD (ere—py) Double
1-core MadEvent Fortran 1.50E6
scalar (x1.15)

« SIMD: excellent speedup from vectorization
. . 1-core Standalone C++
— NB: only measuring the parallel calculation .
— Lower overall speedup (Amdahl’s law...)

1-core Standalone C++
128-bit SSE4.2

» Best throughput: AVX512 limited to 256-bit width (x2 doubles)

— x3.7 over scalar C++ (vs x4 theoretical maximum) 1-core Standalone C++
256-bit AVX2

» Estimate a x3.3 speedup over scalar Fortran

— Thanks to Sebastien Ponce for the suggestion! (x4 doubles)

1-core Standalone C++
“256-bit” AVX512

» Disappointing: AVX512 with 512-bit width (x4 doubles)
— ? ?
Slower tlhan AVX2, why* Sloxlwer clocl.(, what else” 1-core Standalone Gt
— Can be improved? x8 theoretical maximum... 512-bit AVX512
(x8 doubles)
#Symbolsin.o | sspa2 | Avx2 | Avx512 | AVX512
Build type (xmm) | (ymm) | (ymm) | (zmm)
Scalar 614 0 0 0
SSE4.2 3274 0 0 0
AVX2 0 2746 0 0 Ly Afew AVX512VL symbols yield a 7% improvement over pure AVX2
256-bit AVX512 0 2572 0
! Degree of vectorization checked by disassembling (objdump)
512-bit AVX512 0 1127 205 2045 Custom categorization of symbols

A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 17

\ UCL f”\
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne o (& nivrs |

NATIONAL LABORATORY
‘\ deLouvain f

Genera
ZMC@NLO (
P

Madeaph5—

MC Physics Event Generator Software:
the application

R R ITEP I WG
- 3 o

» Software (and theory) diversity is good for physics
— It provides cross-checks and healthy competition

» But it complicates the definition of an R&D strategy
—Many software packages to optimize (and maintain!)
—Prioritization (“profiling”): is there a CPU “hotspot™?

A complex and heterogeneous problem

| states:
LHC f;'la-!ets. di-poson: }i‘::'*_
O altijet, gamma *

A. Valassi — MC generators challenges and strategy towards HL-LHC LHCC - 01 Sep 2020
Z

Software performance and portability in Madgraph5_aMC@NLO

ICHEP, Bologna, 8 July 2022

https://doi.org/10.5281/zeno0d0.4028834

Argonne &

NNNNNNNN LABORATORY

@ |
~Z_~ cal
de Lol

https://doi.org/10.5281/zenodo.4028834

Issue #2 (no input data)
Data-parallel paradigms Pseudo-random numbers

Uniform distribution in [0,1]

(GPUs and vectorization) A i e
0000000

Generators lend themselves naturally TN

to exploiting event-level parallelism BT

via data-parallel paradigms™*

_ . : For each event i, map 7. to physical phase space %; = H(7)
SPMD: Single Program Multiple The resulting x; are distributed according to a known p.d.f. g(¥)
Data (GPU accelerators) Compute the value of g(i,)

- SIMD: Single Instruction Multiple |||||”|

Data (CPU vectorization: AVX...)

Matrix element* calculation

- The computatfona ”V intensive For each event i, compute the differential cross-section f(%;)
Compute the weight w;=f (¥;)/g(X;)

part, the matrix element f(x;), is
the same function for all events i

(in a given category of events) Monte Carlo integration Monte Carlo unweighting

- Unlike detector simulation (where . - Heventi d T
. : or each eventt, draw r; in |U,
ifthen branches are frequent and Average of weights [=2, w; Accept If 7, < w, fw,. .., reject otherwise
lead to thread divergence on GPUs) | — Output: I (estimator of [x dx) ~5 Output: N,,,,, unweighted events

Potential interest of GPUs *Note for software engineers: these calculations do involve some
- Faster (cheaper?) than on CPUs linear algebra, but “matrix element” does not refer to that! Here we

- Exploit GPU-based HPCs GPUS compute one “matrix element” in the S-matrix (scattering matrix)

MC on o glide for the transition from the initial state to the final state
ne
ol -5

wi P f WG talk) **This simple event-level parallelism can also be used as the basis

nné for task-parallel approaches (multi-threading or multi-processing)

(pla P PP g P g

https://doi.org/10.5281/zeno0d0.4028834

A. Valassi — MC generators challenges and strategy towards HL-LHC LHCC - 01 Sep 2020

\ UCL f”\
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonne o (& :’:h“;rﬂsia

NATIONAL LABORATORY
‘\ deLouvain .

https://doi.org/10.5281/zenodo.4028834

