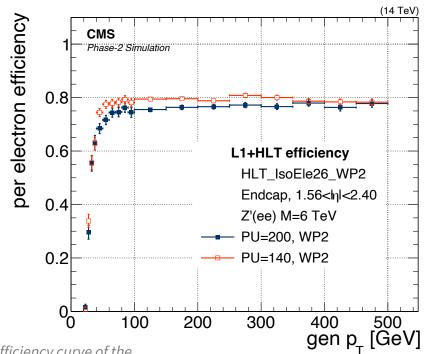


The High-Level Trigger for the CMS Phase-2 Upgrade


THIAGO R. F. P. TOMEI

SPRACE-Unesp

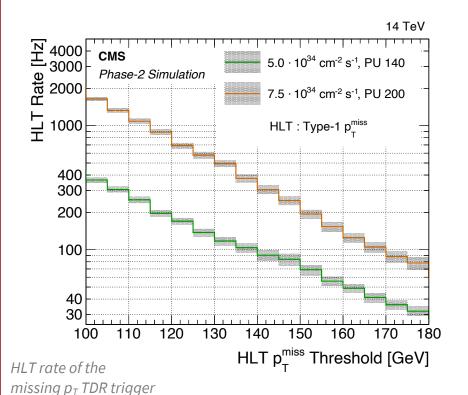
Conceptual DAQ Design (with HLT)

The Triple Challenge of the HLT

Efficiency curve of the single electron TDR trigger

Efficiency

- ☐ Select the events of interest
- ☐ Generalist vs. specialized triggers


Rate

- Discard uninteresting events
- Output rate / bandwidth envelope

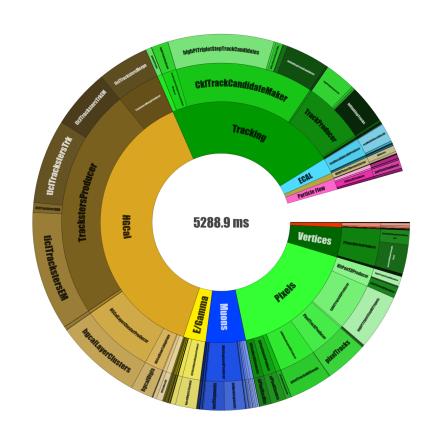
Timing

- Quasi-real time analysis
- ☐ Dependent on HLT farm size

The Triple Challenge of the HLT

Efficiency

- ☐ Select the events of interest
- ☐ Generalist vs. specialized triggers


Rate

- ☐ Discard uninteresting events
- ☐ Output rate / bandwidth envelope

Timing

- Quasi-real time analysis
- ☐ Dependent on HLT farm size

The Triple Challenge of the HLT

Efficiency

- ☐ Select the events of interest
- ☐ Generalist vs. specialized triggers

Rate

- Discard uninteresting events
- ☐ Output rate / bandwidth envelope

Timing

- Quasi-real time analysis
- Dependent on HLT farm size

HL-LHC DAQ-HLT Parameters

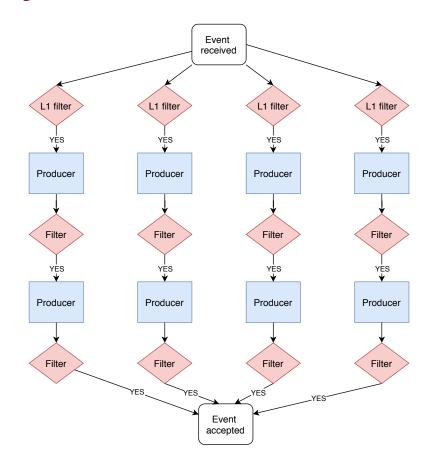
CMS detector	LHC Phase-1		LHC se-2
Peak (PU)	60	140	200
L1 accept rate (maximum)	100 kHz	500 kHz	750 kHz
Event Size at HLT input	$2.0\mathrm{MB}$ ^a	6.1 MB	8.4 MB
Event Network throughput	1.6 Tb/s	24 Tb/s	51 Tb/s
Event Network buffer (60 s)	12 TB	182 TB	379 TB
HLT accept rate	1 kHz	5 kHz	7.5 kHz
HLT computing power ^b	0.7 MHS06	17 MHS06	37 MHS06
Event Size at HLT output ^c	1.4 MB	4.3 MB	5.9 MB
Storage throughput ^d	$2\mathrm{GB/s}$	$24\mathrm{GB/s}$	51 GB/s
Storage throughput (Heavy-Ion)	$12\mathrm{GB/s}$	51 GB/s	51 GB/s
Storage capacity needed (1 day e)	0.2 PB	1.6 PB	3.3 PB

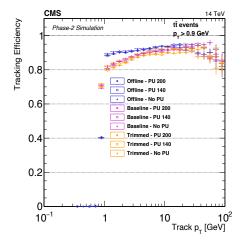
HL-LHC DAQ-HLT Parameters

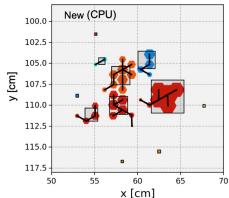
	LHC	HL-	LHC
CMS detector	Phase-1		se-2
Peak 〈PU〉	60	140	200
L1 accept rate (maximum)	$100\mathrm{kHz}$	500 kHz	750 kHz
Event Size at HLT input	$2.0\mathrm{MB}$ ^a	6.1 MB	8.4 MB
Event Network throughput	1.6 Tb/s	24 Tb/s	51 Tb/s
Event Network buffer (60 s)	12 TB	182 TB	379 TB
HLT accept rate	1 kHz	5 kHz	7.5 kHz
HLT computing power ^b	0.7 MHS06	17 MHS06	37 MHS06
Event Size at HLT output ^c	1.4 MB	4.3 MB	5.9 MB
Storage throughput ^d	$2\mathrm{GB/s}$	$24\mathrm{GB/s}$	51 GB/s
Storage throughput (Heavy-Ion)	$12\mathrm{GB/s}$	51 GB/s	51 GB/s
Storage capacity needed (1 day ^e)	0.2 PB	1.6 PB	3.3 PB

Phase-2 HLT: Physics Objects, Paths, Menu

Physics objects


- ☐ Same algorithms as offline
- Same framework (CMSSW)
- Added emphasis in execution speed


HLT paths


- ☐ Targets a given final state
- Sequence of filters / producers
- Early filtering

HLT menu

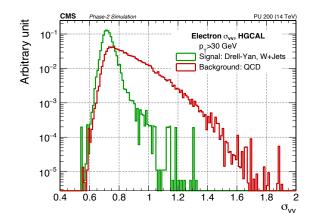
- Collection of HLT paths
- Reuse variables among paths
- Multithreaded since 2016
 - Parallel event processing
 - Simultaneous module execution

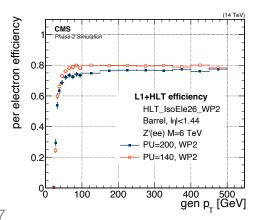
Tracking, HGCAL

- ☐ Iterative, high-granularity detectors
- ☐ Tuned for online constraints

Electrons and photons

- ☐ (ECAL / HGCAL)-seeded objects
- Extensive ID to reduce backgrounds


Muons


☐ Seeded from L1TkMuon objects

Jets, missing p_T

☐ Extensive pileup mitigations

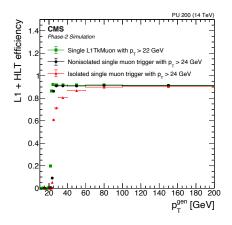
Tau leptons, b-tagged jets

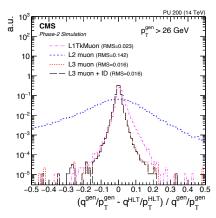
Tracking, HGCAL

- ☐ Iterative, high-granularity detectors
- ☐ Tuned for online constraints

Electrons and photons

- ☐ (ECAL / HGCAL)-seeded objects
- Extensive ID to reduce backgrounds


Muons


☐ Seeded from L1TkMuon objects

Jets, missing p_T

☐ Extensive pileup mitigations

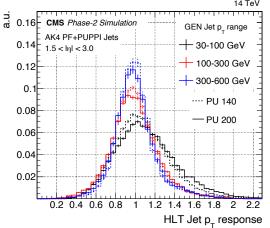
Tau leptons, b-tagged jets

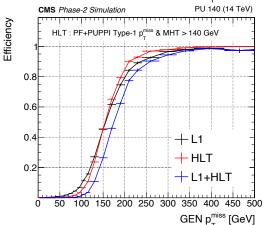
Tracking, HGCAL

- Iterative, high-granularity detectors
- Tuned for online constraints

Electrons and photons

- ☐ (ECAL / HGCAL)-seeded objects
- Extensive ID to reduce backgrounds


Muons


☐ Seeded from L1TkMuon objects

Jets, missing p_T

■ Extensive pileup mitigations

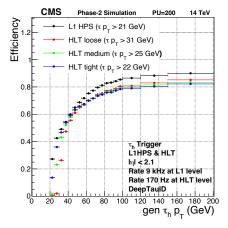
Tau leptons, b-tagged jets

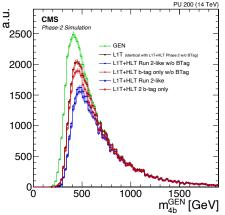
Tracking, HGCAL

- ☐ Iterative, high-granularity detectors
- Tuned for online constraints

Electrons and photons

- ☐ (ECAL / HGCAL)-seeded objects
- ☐ Extensive ID to reduce backgrounds


Muons


☐ Seeded from L1TkMuon objects

Jets, missing p_T

■ Extensive pileup mitigations

Tau leptons, b-tagged jets

Tracking, HGCAL

- Iterative, high-granularity detectors
- ☐ Tuned for online constraints

Electrons and photons

- ☐ (ECAL / HGCAL)-seeded objects
- ☐ Extensive ID to reduce backgrounds

Muons

☐ Seeded from L1TkMuon objects

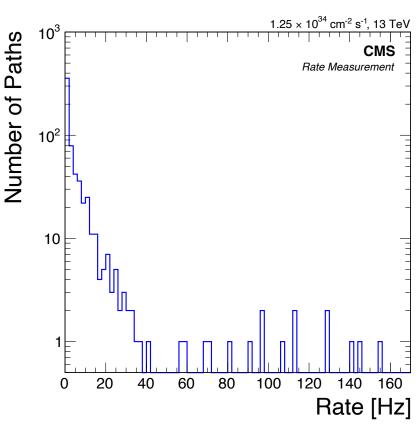
Jets, missing p_T

☐ Extensive pileup mitigations

Tau leptons, b-tagged jets

The Phase-2 Simplified Menu

2018 full menu


- \square ~600 paths, most low rate
- Few heavy hitters: single e, μ

Target 50% of the Phase-2 rate

- □ ~15 single-object based paths
- ☐ Same structure of Phase-1 menu

Extrapolation from simplified to full menu

- ☐ Same distribution structure
- ☐ Correction factor: +50%

The Phase-2 Simplified Menu

2018 full menu

- \square ~600 paths, most low rate
- Few heavy hitters: single e, μ

Target 50% of the Phase-2 rate

- □ ~15 single-object based paths
- ☐ Same structure of Phase-1 menu

Extrapolation from simplified to full menu

- ☐ Same distribution structure
- ☐ Correction factor: +50%

Phase-1 path	2018 threshold [GeV]	% of 2018 HLT rate
Single muon	50	3%
Single muon (isolated)	24	14%
Double muons	37, 27	1%
Double muons (isolated)	17,8	2%
Single electron (isolated)	28	13%
Double electrons	25, 25	1%
Single photon	200	1%
Single photon (isolated)	110, EB only	1%
Double photons	30, 18	2%
Single tau	180	1%
Double taus	35, 35	3%
Single jet	500	1%
Single jet w/substructure	400	2%
Multijets with b-tagging	jets = 75, 60, 45, 40	
	$H_{\rm T} = 330$	1%
Total transverse momentum	1 050	1%
Missing transverse momentum	120	3%
total		50%

The Phase-2 Simplified Menu

2018 full menu

- □ ~600 paths, most low rate
- \blacksquare Few heavy hitters: single e, μ

Target 50% of the Phase-2 rate

- □ ~15 single-object based paths
- ☐ Same structure of Phase-1 menu

Extrapolation from simplified to full menu

- Same distribution structure
- Correction factor: +50%

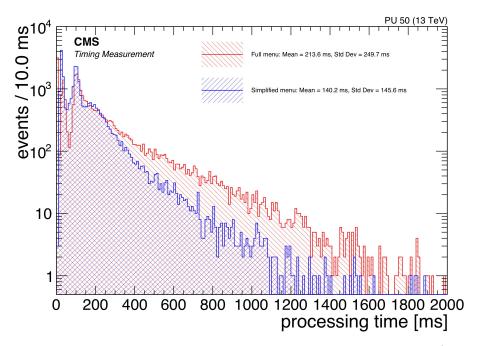


Fig 11.3

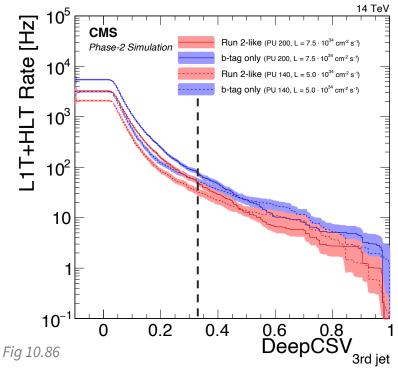
Simplified Menu: Rates

Process	Cross section [µb]
QCD multijets in \hat{p}_{T} bins	
15–20	9.233×10^{2}
20–30	4.360×10^{2}
30–50	1.184×10^{2}
50-80	1.765×10^{1}
80–120	2.671×10^{0}
120–170	4.697×10^{-1}
170–300	1.217×10^{-1}
300-470	8.251×10^{-3}
470-600	6.864×10^{-4}
600–∞	2.448×10^{-4}
W + jets	5.699×10^{4}
Drell–Yan, $10\text{GeV} < m_{\ell\ell} < 50\text{GeV}$	1.688×10^{-2}
Drell–Yan, $50 \text{GeV} < m_{\ell\ell}$	5.795×10^{-3}

Tab 10.1

Simulated MC samples

- Minimum-bias (MB) sample: SoftQCD Pythia
 - Used for pileup events
 - Stand-in for lowest pthat QCD bin
- Multijet QCD
 - Disjoint pthat bins
 - Regular + lepton-enriched varieties
- W, Drell-Yan samples


Rate calculation

- Efficiency over each sample
- \Box Function of p_T or ID threshold
- ☐ Individual for each path

Stitching

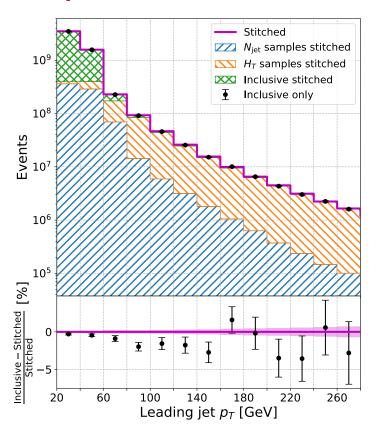
Correct "pileup events harder than main interaction"

Simplified Menu: Rates

$$\hat{R} = \sum_{i = \text{ samples}} \sigma_i \times \epsilon_{\text{HLT}} \times \mathcal{L}$$

Simulated MC samples

- ☐ Minimum-bias (MB) sample: SoftQCD Pythia
 - Used for pileup events
 - Stand-in for lowest pthat QCD bin
- Multijet QCD
 - Disjoint pthat bins
 - Regular + lepton-enriched varieties
- W, Drell-Yan samples


Rate calculation

- Efficiency over each sample
- \blacksquare Function of p_T or ID threshold
- Individual for each path

Stitching

Correct "pileup events harder than main interaction"

Simplified Menu: Rates

Simulated MC samples

- ☐ Minimum-bias (MB) sample: SoftQCD Pythia
 - Used for pileup events
 - Stand-in for lowest pthat QCD bin
- Multijet QCD
 - Disjoint pthat bins
 - Regular + lepton-enriched varieties
- W, Drell-Yan samples

Rate calculation

- ☐ Efficiency over each sample
- \blacksquare Function of p_T or ID threshold
- Individual for each path

Stitching

Correct "pileup events harder than main interaction"

Electron, muon, photon

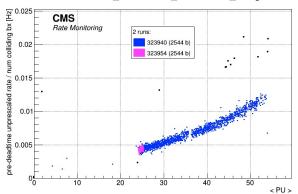
☐ Very close to Phase-1

Trigger type	Phase-	1	Phase-2			
	Threshold			Threshold	Rate at	Rate at
	[GeV]	% rate	L1 seed	[GeV]	$\langle PU \rangle = 140 [Hz]$	$\langle PU \rangle = 200 [Hz]$
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29
Double <i>µ</i>	37, 27	1%	TkMu_15_7	37, 27	27 ± 1	40 ± 1
Double μ (isol.)	17,8	2%	TkMu_15_7	17, 8	113 ± 11	143 ± 13
Triple μ	5, 3, 3	0.5%	TkMu_5_3_3 StaEG_51 OR	10, 5, 5	39 ± 8	48 ± 8
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33
			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33
Double e	25, 25	1%	TkEle_25_12 OR StaEG_37_24	25, 25	46 ± 4	82 ± 6
Double e (isol.)	23, 12	1%	TkEle_25_12 OR StaEG_37_24 OR TkIsoEle_22_StaEG_12	23, 12	52 ± 5	104 ± 9
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6
Single γ (isol.)	110, EB only	1%	StaEG_51 OR TkIsoPho_36	108, EB only	35 ± 9	52 ± 2
Double γ	30, 18	2%	StaEG_37_24 OR TkIsoPho_22_12	30, 23	123 ± 12	179 ± 14
Double τ	35, 35	3%	HPSPFTau_21_21	22, 22	$106\pm18^{\dagger}$	159 ± 27
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1
H_{T}	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1
Missing p _T	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5
with b-tagging	jets = 75, 60, 45, 40		40_40_PuppiHT_328	jets = 75, 60, 45, 40		
Total rate		49%			$\textbf{2525} \pm \textbf{57}$	3621 ± 62

Electron, muon, photon

☐ Very close to Phase-1

Hadronic paths


Jet, H_T , missing p_T : only small increases

Trigger type	Phase-	1	Phase-2				
	Threshold			Threshold	Rate at	Rate at	
	[GeV]	% rate	L1 seed	[GeV]	$\langle PU \rangle = 140 [Hz]$	$\langle PU \rangle = 200 [Hz]$	
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8	
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29	
Double μ	37, 27	1%	TkMu_15_7	37, 27	27 ± 1	40 ± 1	
Double μ (isol.)	17, 8	2%	TkMu_15_7	17,8	113 ± 11	143 ± 13	
Triple <i>µ</i>	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	39 ± 8	48 ± 8	
1 ,			StaEG_51 OR				
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33	
9 . ,			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33	
Double e	25, 25	1%	TkEle_25_12 OR	25, 25	46 ± 4	82 ± 6	
			StaEG_37_24				
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	104 ± 9	
` ,			StaEG_37_24 OR				
			TkIsoEle_22_StaEG_12				
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6	
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 7	
0 , . ,			TkIsoPho_36	, ,			
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14	
,	•		TkIsoPho_22_12	·			
Double τ	35, 35	3%	HPSPFTau_21_21	22, 22	$106\pm18^{\dagger}$	159 ± 27	
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1	
H_{T}	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1	
Missing $p_{\rm T}$	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20	
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5	
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,			
00 0	45, 40			45, 40			
Total rate		49%			$\textbf{2525} \pm \textbf{57}$	3621 ± 62	

Electron, muon, photon

☐ Very close to Phase-1

- Jet, H_T, missing p_T:
 only small increases
 - Tamed (PU)² growth
 HLT PFMET140 PFMHT140 IDTight

Trigger type	Phase-	1	Phase-2				
	Threshold	d		Threshold	Rate at	Rate at	
	[GeV]	% rate	L1 seed	[GeV]	$\langle PU \rangle = 140 [Hz]$	$\langle PU \rangle = 200 [Hz]$	
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8	
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29	
Double <i>µ</i>	37, 27	1%	TkMu_15_7	37, 27	27 ± 1	40 ± 1	
Double u (isol.)	17, 8	2%	TkMu_15_7	17, 8	113 ± 11	143 ± 13	
Triple μ	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	39 ± 8	48 ± 8	
1 /	-,-,-		StaEG_51 OR	,.,.			
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33	
0 (/			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33	
Double e	25, 25	1%	TkEle_25_12 OR	25, 25	46 ± 4	82 ± 6	
	,		StaEG_37_24	,			
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	104 ± 9	
(()	,		StaEG_37_24 OR	,			
			TkIsoEle_22_StaEG_12				
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6	
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 7	
, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		TkIsoPho_36	, , , , , , , , , , , , , , , , , , , ,			
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14	
,			TkIsoPho_22_12				
Double τ	35, 35	3%	HPSPFTau_21_21	22, 22	$106\pm18^{\dagger}$	159 ± 27	
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1	
H_{T}	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1	
Missing $p_{\rm T}$	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20	
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5	
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,			
00 0	45, 40		<u></u>	45, 40			
Total rate		49%			$\textbf{2525} \pm \textbf{57}$	3621 ± 62	

Electron, muon, photon

☐ Very close to Phase-1

- Jet, H_T, missing p_T:
 only small increases
- Multijet with b-tagging:same as Phase-1

Trigger type	Phase-	1		Phase-2				
	Threshold			Threshold	Rate at	Rate at		
	[GeV]	% rate	L1 seed	[GeV]	$\langle PU \rangle = 140 [Hz]$	$\langle PU \rangle = 200 [Hz]$		
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8		
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29		
Double μ	37, 27	1%	TkMu_15_7	37, 27	27 ± 1	40 ± 1		
Double μ (isol.)	17,8	2%	TkMu_15_7	17,8	113 ± 11	143 ± 13		
Triple <i>µ</i>	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	39 ± 8	48 ± 8		
1 /			StaEG_51 OR					
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33		
			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33		
Double e	25, 25	1%	TkEle_25_12 OR	25, 25	46 ± 4	82 ± 6		
	·		StaEG_37_24	·				
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	104 ± 9		
` /	,		StaEG_37_24 OR	,				
			TkIsoEle_22_StaEG_12					
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6		
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 7		
0 / ()	, ,		TkIsoPho_36	, ,				
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14		
,	,		TkIsoPho_22_12	,				
Double $ au$	35, 35	3%	HPSPFTau_21_21	22, 22	$106 \pm 18^{+}$	159 ± 27		
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1		
H_{T}	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1		
Missing $p_{\rm T}$	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20		
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5		
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,				
00 0	45, 40		111	45, 40				
	,			,				
Total rate		49%			$\textbf{2525} \pm \textbf{57}$	3621 ± 62		

Electron, muon, photon

☐ Very close to Phase-1

- Jet, H_T , missing p_T : only small increases
- Multijet with b-tagging:same as Phase-1
- Double tau: smaller p_T thresholds
 - Follow decrease from PFlow at Level-1

Trigger type	Phase-	1		Phase-	2	
	Threshold			Threshold	Rate at	Rate at
	[GeV]	% rate	L1 seed	[GeV]	$\langle PU \rangle = 140 [Hz]$	$\langle PU \rangle = 200 [Hz]$
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29
Double μ	37, 27	1%	TkMu_15_7	37, 27	27 ± 1	40 ± 1
Double μ (isol.)	17,8	2%	TkMu_15_7	17,8	113 ± 11	143 ± 13
Triple <i>µ</i>	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	39 ± 8	48 ± 8
1 /			StaEG_51 OR			
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33
9 . ,			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33
Double e	25, 25	1%	TkEle_25_12 OR	25, 25	46 ± 4	$82\pm\epsilon$
			StaEG_37_24			
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	104 ± 9
` ,	·		StaEG_37_24 OR	,		
			TkIsoEle_22_StaEG_12			
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 7
0 , . ,	. ,		TkIsoPho_36	. ,		
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14
,	·		TkIsoPho_22_12	,		
Double τ	35, 35	3%	HPSPFTau_21_21	22, 22	$106 \pm 18^{+}$	159 ± 27
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1
H_{T}	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1
Missing p _T	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,		
00 0	45, 40		11	45, 40		
Total rate		49%			$\textbf{2525} \pm \textbf{57}$	3 621 ± 62

Electron, muon, photon

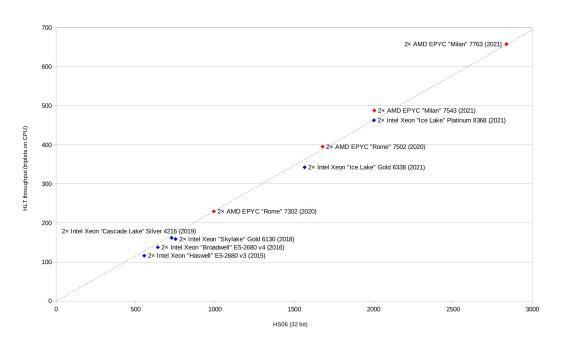
☐ Very close to Phase-1

- Jet, H_T , missing p_T : only small increases
- Multijet with b-tagging:same as Phase-1
- Double tau:

 smaller p_T thresholds
 - Follow decrease from PFlow at Level-1

Trigger type	Phase-	1		Phase-	2	
	Threshold			Threshold	Rate at	Rate at
	[GeV]	% rate	L1 seed	[GeV]	$\langle PU \rangle = 140 [Hz]$	$\langle \mathrm{PU} angle = 200 \mathrm{[Hz]}$
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29
Double μ	37, 27	1%	TkMu_15_7	37, 27	27 ± 1	40 ± 1
Double μ (isol.)	17, 8	2%	TkMu_15_7	17, 8	113 ± 11	143 ± 13
Triple μ	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	39 ± 8	48 ± 8
1 /			StaEG_51 OR			
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33
9 . ,			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33
Double e	25, 25	1%	TkEle_25_12 OR	25, 25	46 ± 4	$82\pm\epsilon$
			StaEG_37_24			
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	104 ± 9
` ,			StaEG_37_24 OR			
			TkIsoEle_22_StaEG_12			
Single γ	200	1%	StaEG_51	187	32 ± 1	$56\pm\epsilon$
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 7
0 , . ,	. ,		TkIsoPho_36	, ,		
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14
,	·		TkIsoPho_22_12	·		
Double τ	35, 35	3%	HPSPFTau_21_21	22, 22	$106\pm18^{\dagger}$	159 ± 27
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1
H_{T}	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1
Missing p _T	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,		
00 0	45, 40		11	45, 40		
Total rate		49%			$\textbf{2525} \pm \textbf{57}$	3621 ± 62

Reference hardware


- 2x AMD EPYC 7502 processors, 64 (128) physical (logical) cores
- ☐ 1679 +- 2 HS06 computing power
- ☐ HLT processing power~ follows HS06 number

Modus operandi

- Integrated HLT menu
 - Exception: tau reconstruction
- 32 independent HLT jobs
- 4 threads per job

Samples

- ☐ L1-skimmed MB
 - Realistic approximation of HLT input
- Inclusive ttbar production
 - Hypothetical case: almost all events accepted

Reference hardware

- 2x AMD EPYC 7502 processors, 64 (128) physical (logical) cores
- ☐ 1679 +- 2 HS06 computing power
- ☐ HLT processing power~ follows HS06 numbe

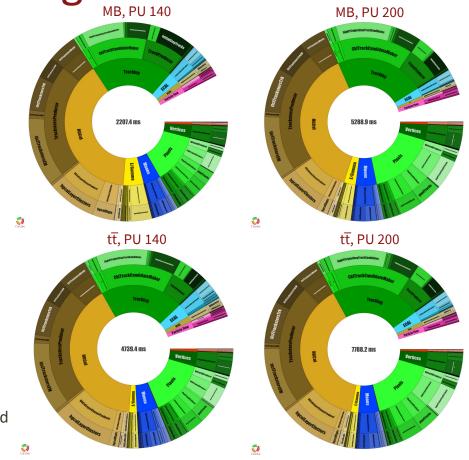
Modus operandi

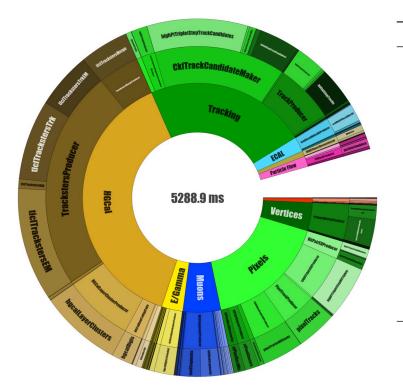
- ☐ Integrated HLT menu
 - Exception: tau reconstruction
- ☐ 32 independent HLT jobs
- 4 threads per job

Samples

- L1-skimmed ME
 - Realistic approximation of HLT
- Inclusive ttbar production
 - Hypothetical case: almost all events accepted

Reference hardware


- 2x AMD EPYC 7502 processors, 64 (128) physical (logical) cores
- ☐ 1679 +- 2 HS06 computing power
- ☐ HLT processing power~ follows HS06 number


Modus operandi

- ☐ Integrated HLT menu
 - Exception: tau reconstruction
- 32 independent HLT jobs
- 4 threads per job

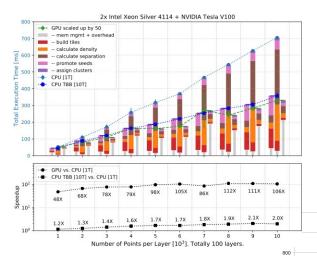
Samples

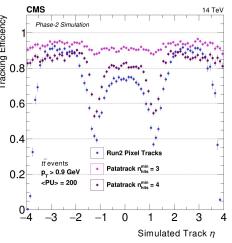
- L1-skimmed MB
 - Realistic approximation of HLT input
- Inclusive ttbar production
 - Hypothetical case: almost all events accepted

Fig	11	١.	4
-----	----	----	---

Element	Time	Fraction
B tagging	0.4 ms	0.0 %
E/Gamma	158.4 ms	3.0 %
ECAL	110.9 ms	2.1 %
Framework	0.0 ms	0.0 %
HCAL	41.6 ms	0.8 %
HGCal	2030.5 ms	38.4 %
HLT	0.7 ms	0.0 %
I/O	0.4 ms	0.0 %
Jets/MET	32.1 ms	0.6 %
L1T	2.5 ms	0.0 %
Muons	280.9 ms	5.3 %
other	232.8 ms	4.4 %
Particle Flow	78.9 ms	1.5 %
Pixels	902.3 ms	17.1 %
Tracking	1204.5 ms	22.8 %
Vertices	211.9 ms	4.0 %
total	5288.9 ms	100.0 %

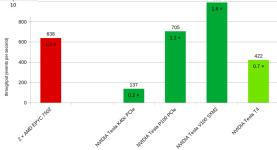
Reduced from offline reconstruction O(100) s/ev


Heterogeneous Computing


Ubiquitous solution for CMS computing needs by 2027


☐ Heterogeneous HLT farm already starting from Run-3.

Phase-2 heterogeneous HLT

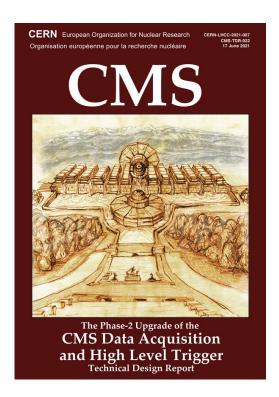

■ Under development: HGCAL local reconstruction, Patatrack pixel reconstruction.

- □ 0.70 CHF/HS06 in 2028 50% code ported
- □ 0.22 CHF/HS06 in 2032 80% code ported

Conclusions

Reconstruction advanced enough to build a simplified menu for the TDR.

- ☐ Fully realistic (no simulation shortcuts) and integrated in CMSSW.
- Basic single-object paths with performance very close to Phase-1.
- □ Solid foundation to evolve into real menu to be deployed in Phase-2.

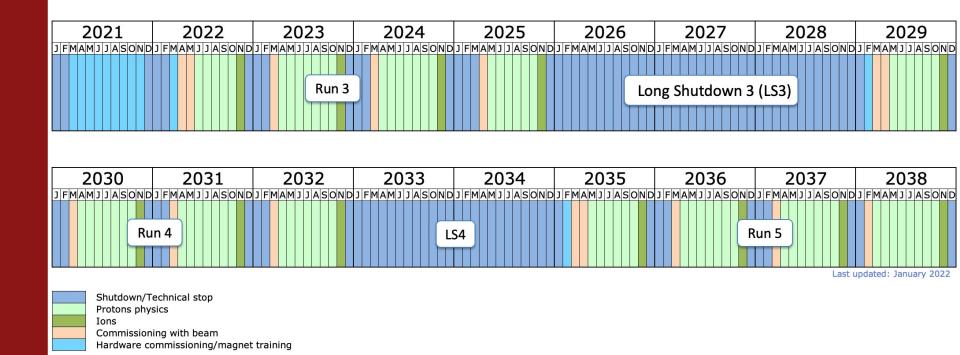

Rates and timing under control.

- ☐ Simplified menu keeps to 50% of the target Phase-2 rate.
- Large p_⊤ threshold increases are not needed.
- ☐ Timing structure of the menu understood.
 - In order to meet the overall constraints for the HLT farm, we need to improve the overall timing by a small factor (1.5-2x).

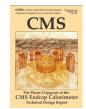
Heterogeneous HLT under development.

☐ Initial deployment already in Run3.

Thanks!



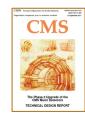
Please read our TDR: https://cds.cern.ch/record/2759072/



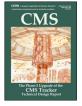
Backup

LHC Long Term Schedule

CMS Phase-2 Upgrade Overview

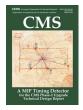

Endcap Calorimeter

- 3D showers + precise timing
- Si, Scint+SiPM in Pb/W-SS

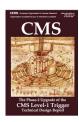


Barrel Calorimeters

- ECAL readout at 40 MHz w/ precise timing at 30 GeV
- ECAL/HCAL new back-end boards



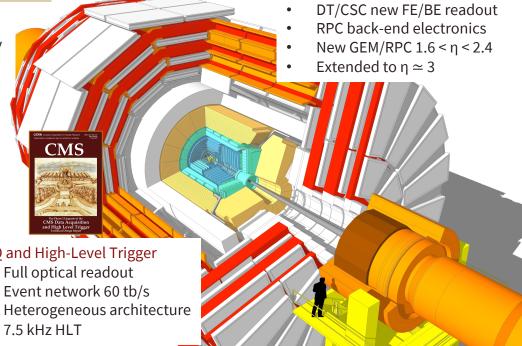
Muon Systems


Tracker

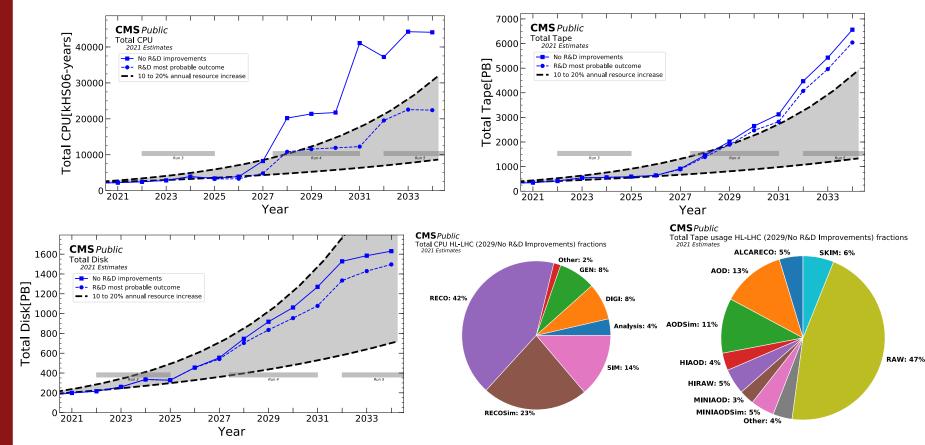
- Si-Strip/Pixels increased granularity
- Tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

MIP Timing Detector

- Precision timing with:
 - Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain **Avalanche Diodes**



L1-Trigger


- Tracks in L1-Trigger at 40 MHz
- PFlow selection
- 750 kHz L1

DAQ and High-Level Trigger

- Full optical readout
- Heterogeneous architecture
- 7.5 kHz HLT

Phase-2 Offline and Computing

