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Introduction to
Tracking with
GNNs



Tracking Challenge at HL-LHC

- Tracking is critical for meeting physics goals of LHC

- Tracking is the most computationally intensive reco task
- Time grows worse than quadratically with increasing number of collisions
- Additional challenges of overlapping tracks

- Must exploit developments in hardware and software
- Improved algorithms and data representation

- Parallelize currently serial algorithms
- Adapt to modern architectures (GPU, FPGA)

[ CMS Simulation, Vs = 13 TeV, it + PU, BX=25ns ]
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- A graph is a mathematical structure
composed of:

- Nodes: vertices with associated

information (spatial coordinates, features,

etc) /
- Edges: connections between nodes Jet

- Can be directed or undirected, can have
associated information

- Graphs can represent many types of
relational/geometric data
- Intuitive representation for geometric,
structured, variable
physics data

. This is a node

This is an edge //‘ ,\

Lepton | Jet

MET

Image source


https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a
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‘Vanilla’ Graph Neural Networks

- GNNs learn a smart embedding of the graph structure

- Leverage geometric information by passing and aggregating
messages from neighbors

- Practically, W, and B, are shallow neural networks applied to
a neighborhood based feature set

Initial “layer 0” embeddings are previous layer

-/ equal to node features embedding of v
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‘Vanilla’ Graph Neural Networks

Initial “layer 0" embeddings are  previous layer

-/ equal to node features embedding of v

+Bh* |, VE>C

kth layer
embefddiﬂg non-linearity (e.g., a‘@ of neighbor’s
of v ReL.U or tanh)  evious layer embeddings

Image source


https://towardsdatascience.com/do-we-need-deep-graph-neural-networks-be62d3ec5c59
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- Graph Construction:
G N N S fO r TraCkl n g Input event in graph representation

Basic procedure
1. Form initial graph from

spacepoints/hits (pre- _GNN Classifies Edges:
. - Green = true track segment
prOCGSSIng) Red = false hit connection

2. Process with GNN to get
probabilities of all edges

3. Apply post-processing T i
algorlthm tO Ilnk edgeS Connecting-the-dots
tOgether into tracks and get - algorithm extracts tracks . o
parameters 4 2
E :
. 1000 i i

- Many places to improve/innovate
- Graph construction, architectures, data
augmentation...
2 2 “11 - Most work shown here uses [racklVIL dataset
C - Open, experiment agnostic
| | || | » - 200 PU, silicon semiconductor detector

-2000 1000 1000 2000 3000
z [mn]

800

600

400

200

LB . . L

o

w
=3
=3
=3


https://www.kaggle.com/c/trackml-particle-identification
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Edge Classifying
GNN Architectures
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Graph Construction

Optimizing graph construction can help GNNs learn effectively

1.000

- Purity: true edges/all edges

- Efficency: true edges in graph/all possible true edgé$’

Cur

- Preclustering: geometric + DBScan in eta-phi

rent Methods

Geometric: create edges between nodes in
adjacent layers within allowed cone

>
O

b=
w

space

0.975 A

- Data driven/module map: edges allowed

between modules that have produced valid track
segments in independent sample
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0.40 A
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eometric & Pre-Clustering
eometric & Data-Driven
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Interaction Network

le-3

wv

- Originally developed for next time step
predictions of physical systems

- Our implementation adds an additional
relational model to predict edge weights

- Includes geometric edge features .

- Total of ~6,000 learnable parameters

0.9990

- Much smaller than other architectures
- After hyperparameter scan

0.9985 -

BCE Loss
W (

8 0.9980
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l 1 ] l Y 0.9975
Interaction network <
Relational Object Edge 0.9970 A
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0.9965
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Y Sl J L —— 80 h.u. Epoch
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= (/)()("i Zze\ iy %ij ) — —— 40 h.u.
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Pr.1 3 b Dr.2 3

Trained with standard BCE loss
Lo(yj,wy) == E (yjlogw; + (1 - y;)log(1 — w;))

Our Paper, Original Paper



https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/1612.00222

Savannah Thais 07/08/2022 12

IN Edge Classification Peformance

Models trained and tested on a range of graph pt

Training pi"'n [GeV]
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0.9985 -
>
E 0.9980 -
=
o N
<‘t" 0.9975 4 — pfin= 2.0
— piPin= 15
0.9970 -+ ;
— pfin=1.0
0.9965 Lk ; : — [F= PP 03
0 50 100 150 —— pf"=108
Epoch — pPin= 0.7
— piMin= 0.6
0.20
s Ty
! VIV
\ N ?’ ; F ?
] {0 WA vA
3 OENRY Vi X
§ L / ; /5 Vi &
= AR Wiy X)) A
£ QOR\\Y i
= W\ W ik i
N LA N x %
S | ) YV i ]
SOA N % . ¢ 72
3 = ¥ o 7z |
{ t g ? B True Positive
" EEE True Negative
0.02 1 B False Positive
False Negative

z [m]

T
1.5

Edge Classification Accuracy (%)

2 s 99.32(5) f 99.29(6) g 99.25(8)

1.5 99.20(8) §98.98(12) 98.17(26)
1 99.32(10) g 97.83(21)

0.9
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Testing pf'" [GeV]

Results:

- 99.9% edge efficiency for matching pt

- 97.8-99.8% edge efficiency for non-
matching pt



Compared 2 methods to group selected edges into track candidates

Tracking Efficiency

Tracking Efficiency
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IN Tracking Performance
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Results: 70-99% tracking efficiency

- LHC match:
cluster
contains
>=75% hits
from same PID

- Double-
majority:
cluster >= 50%
hits from same
PID and
>=50% of that
PIDs hits

- Perfect match:
cluster
contains all
hits from 1 PID
and only hits
from that PID
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Edge Classifier Network

- Encoder creates an initial embedding of

the graph

- Graph modules combine edge and node

convolutions

- Previous graph embeddings are propagated to

following modules
- Total 260k parameters

- Uses phi reflected graphs
In training
- Intuitive data augmentation

Confusion Matrix

0.9842 | 0.0037

0.0158 | 0.9963

eeeeeeeee

eeeeeeeee

11111

- False Positives
- True Negatives

“EC model”

H2

Hn

uuuuuuuu
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EC Tracking Performance
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Results: 96-98% tracking efficiency (with 1 GeV pt cut)
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Optimization +
Experiment
Studies
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Graph Construction Optimization

- Can expand module map method to
define allowed triplets

- Optimized cuts: |A ¢-slope| < .00023,
|A z-slope| < .1

- ~doubles graph purity!

# Nodes 9950.4

# Edges 220007 1

# True Edges | 18275.9

Purity 83.05%
- Studying graph segmentation to |
better enable parallel processing and
resource constrained inference Clustor 9

- With Gaussian Mixture Models we're able
to separate ~60% of tracks into their own
clusters during graph construction!

Cluster 1
Cluster 3

Dataset Method errackML T | €sc—PDB 1 | XTrackML T | Xsc—PDB T
DBSCAN TrackML 0.579 - 0.7424 - ™
sc-PDB - 0.481 - 0.2863 s ¢
Spectral Clustering || TrackML 0.602 - 0.5968 - k. i ’f, .
sc-PDB - 0.517 - 0.4262 o '
Dynamic kNN TrackML 0.513 - 0.5079 -

sc-PDB - 0.594 - 0.5038

GMM TrackML 0.735 - 0.8194 - .
sc-PDB - 0.408 - 0.3920 Graph Segmentation Paper



https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_144.pdf
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Track Building Optimization

- Walkthrough Method: walkthrough track T | e

150 -

cluster where nodes have multiple neighbors, | 4 &
find longest path, prune nodes not included in~ ;18 Fe

longest path

- Provides small improvement to tracking :
efﬂC'ency, Cr|t|Ca| to traCk f|tt|ng Log Histogram of Absolute Momentum Error

- Could eventually use pruned nodes to develop
additional candidates 10

- Developing fast conformal space track fitting
to further characterize GNN performance 10§

- Can eventually be used in ‘one-shot” architectures

Simple Cluster

0.02
3
0014 ¥~
> 0004 k-
. v ex & ‘-;.
—0.01 \g oSSR o
N,
-0.02

—0.03 4

-0.02 0.00 0.02

10*

Tracks lie on circles in the transverse plane:
R? = (x —a)? + (y — b)?

A conformal map makes the circles in the

x-y plane into straight lines in the u-v plane:

- x2 . yZ

v =
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Object Condensation

Can we improve tracking performance of small(er) networks?

e —
Node Labels
®.-0
. li=1
\Iz o, li =2
TN @®i=3
a12\\\; % . I, =4
Ty
\+.: Edge Labels
(10\‘:' --- y”:O
—
Input Graph
Node Features: x; = ;
Edge Features: a;; = (Arij, Adyj, Anij, AR;j)
hz
A
Clustering

g —

dge Classifier
(updates edge features)
Node Features: z; = (7, 0;, 2;)

Edge Features:
aij = (wij, Arij, Adij, Anij, AR;j)

h.2

v

rObject Condensation

(coordinates in learned clustering space)

New Coordinates: h; € Rout
Condensation Strength: [3; € (0, 1)

J
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\l

Opacity ~ Edge Score (w;;)
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o
o3 326

> /1)

O(50k) learnable parameters
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Object Condensation: Initial Performance

(9_min, sb, Ir)
0.05 0.05 1.000 0.010 0.00130 y=—y———s 1. (0.001, 0.001. 0.001)
‘ ~ 4:(0.001, 0.01, 0.001)
7: (0.001, 0.1, 0.001)
0.04 0.04 0.996 0.008 0.00128 10: (0.001, 1, 0.001)
: 2 . 0996 i) f‘ﬁ\ll’\‘..‘fw«"t{/\; ¥, 0.006 2,0,00126
:>|003 | _3.003 x‘ 1 v g é /
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Train Li ;LOSS Edgeﬂ?jiiafl;ation Attract/Repulse Loss Backgro]nd Loss
Smooth convergence, Converges to ~99.7% Learned clustering Background assignment
no sign of overtraining (consistent with arXiv:2103.16701)  coordinates exhibit falls into minimum for
attract/repulse behavior  best solutions
AVERAGED ACROSS ~10% GRAPHS (0,1.25) 0.851 +/- 0.905 +/- 0.779 +/- 0.091 +/-
0.070 0.058 0.099 0.072
* Per-graph summary (1.25,2.5) 0.895 +/- 0.934 +/- 0.842 +/- 0.071 +/-
» Perfect Match Fraction: 0.827 0.062 0.051 0.087 0.065
* Double Majority Fraction: 0.932 (2.5,3.75) 0.939 +/- 0.966 +/- 0.884 +/- 0.083 +/-
* LHC Loose Fraction: 0.890 0.053 0.044 0.079 0.081

(3.75,5) 0.986 +/- 0.997 +/- 0.969 +/- 0.036 +/-
0.083 0.075 0.106 0.128
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Experiment Integrations

- CMS ML group hosted a hackathon to Graph with min Pr=1Gev
begin integrating GNN tracking into “TAN CMS graph
CMSSW
- Developed tracker data ntupilizer to dump Ev 8

information o) A

- Implemented graph building in C++, used
Triton to run GNN inference, used existing
DBScan implementation to build tracks 200 -0 0 100 200

- Princeton students working on

S S 1.04f ATLASSmulation Prelminary
Opt|m|Z|ng IN fOl' CMS data % 1_025_ 5= 1:ATdvlt:A<u> 200, primaries (i and soft interactions) p_ > 1 GeV é

- UIUC group optimizing EC and IN for g v . -
ATLAS data 2 os et e

e ey ) Z 0.96F =

- Successful initial results obtained, ? o0ak ATLAS edge E
presented within experiment and similar oo classification efficiency, 1
results presented at CTD fo..., SherieRougieralLiD £ID 4

- Has informed planning around EF tracking .
for HL-LHC


mailto:https://github.com/CMS-GNN-Tracking-Hackathon-2021
https://indico.cern.ch/event/1103637/contributions/4821831/attachments/2453859/4205351/CTD_2022_CR_v2.pdf
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Related, On-going,
and Future Work
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Accelerated GNN Tracking

Strong interest in accelerating these algorithms with FPGAs
- Reduce compute time and energy utilization
- Possibly enable use at the trigger level in experiments

- Two complimentary acceleration studies
- Using GNNs directly on hardware via high level synthesis

Detectors

- Using HLS4ML framework Digitizers
- Potentially suitable for L1 Front end pipelines
- Using FPGAs as a co-processor with CPU =
- Potentially suitable for HLT -
3 Readout buffers

<

< P

&

(2

&S
~ Q;\Q«‘-\Q

Switching networks

1
P
—
Processor farm
sec
1ns 1us 100 ms 1s

Our Recent Paper



mailto:https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full
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HLS4ML Stud

————=—= « Firsthls
implementation of
GNN blocks!
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Next Steps in Acceleration

- Throughput optimized implementation achieves <1 us latency
- Could be suitable for L1 trigger!
- Study scaling to larger graphs (currently max 28 nodes/56 edges)

- Need to develop implementations of graph building and track
segment linking on accelerators

- How to handle data flow between different pipeline components
- Complimentary studies on GPU based GNN acceleration

- Many applications of this work to other areas of research and
iIndustry!

300
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o
250 A w
w wv
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N
w

Total time (s)
.‘\
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\
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mailto:https://indico.cern.ch/event/1128328/contributions/4900757/attachments/2455505/4208679/GNN%20accel.pdf
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One Shot Architectures

Can we incorporate track fitting directly into a GNN pipeline?
- Could apply conformal or helical fit after inference
- Helical fits are resource intensive, conformal fits can be hard to tune

- Could add term for track parameter prediction to loss function
- Avoids having to actually fit tracks but balancing loss terms can be difficult
- Particularly interesting for instance segmentation approaches

—— detector layers % real hit position Y reconstructed hit position - -» real trajectory — fitted track

Conceptual paper on instance segmentation



https://arxiv.org/abs/2103.06509
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On-going + Future Tracking Studies

- Compare different spaces for graph construction
- Optimize graph segmentation (and post segmentation relinking)
- Study training on ‘messy’ graphs, inference on ‘clean’ graphs

- Improve existing architectures

- Include external effects in IN, improve edge classification in barrel,
conformal space...

- Alternate shapes for localization in instance segmentation + train end-to-end
- Explore additional clustering/track building algorithms (include edge weights)

- New ideas
- Enforce E(3) or other equivariance
- Add track parameter prediction learning task to existing architectures
- Alternative architectures (accumulation or message passing nodes, new
graph embeddings)
- Further characterize acceleration and potential for use in trigger
- Full FPGA-based tracking pipeline
- Use graph segmentation studies for parallelization
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Conclusions

- Graphs are a natural representation of particle detector data

- Graph-based learning methods can leverage geometric information
for effective reconstruction

- Many different GNN approaches and architectures can work, important to
define cohesive evaluation metrics and benchmarking processes

- Many techniques/insights from GDL, ML, etc can help improve different
components of the pipeline
- GNN inference can be accelerated with dedicated hardware
- Many tradeoffs to consider
- Geometric deep learning is synergistic with particle physics
- There are many open questions still, including how to best collaborate and
information share with other ML researchers
- Open datasets can help!

- Many thanks to my wonderful collaborators!

- Gage DeZoort, Javier Duarte, Abdel Elabd, Aneesh Heintz, Vesal
Razavimaleki, Isobel Ojalvo, Markus Atkinson, Mark Neubauer, Rajat Sahay,
Dominika Krawiec, and the ExaTrkX Collaboration!
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Thank yout!

Happy to answer any questions!

DX} sthais@princeton.edu £/ @basicsciencesav



