

Identification of hadronic tau decays using a deep neural network with the CMS experiment at LHC

International Conference of High Energy Physics ICHEP 2022

July 8th, 2022

Konstantin Androsov¹ on behalf of the CMS Collaboration

¹EPFL and ETHZ

Analysis with hadronic taus at CMS

Tau is the heaviest Standard Model (SM) lepton with the mass of 1.78 GeV that decays into hadrons + neutrino in 64.8% of the cases

- Good performance in reconstruction and identification of the hadronic tau decays is crucial for many important physics analysis in CMS:
- \circ Measurement of the SM properties, including $H\to\tau\tau$ analyses with different production mechanisms
- SM and BSM searches for Higgs pair production: $HH \rightarrow bb\tau\tau$, $HH \rightarrow 4\tau$, ...
- Searches for leptoquarks, heavy neutral leptons, additional charged and neutral scalar bosons
- And many other CMS analyses

Reconstruction of the hadronic tau decays

- In CMS, stable particles are reconstructed using the particle flow (PF) algorithm
- Hadronic tau decays are reconstructed by Hadron + strips (HPS) algorithm
- Starting from jet, the HPS algorithm analyses information from stable PF particles within the jet cone to identify typical hadronic tau decay signatures

Decay mode	Resonance	${\mathscr B}$ (%)	
Leptonic decays		35.2	
$\tau^- \rightarrow e^- \overline{\nu}_e \nu_\tau$			17.8
$\tau^- o \mu^- \overline{\nu}_\mu \nu_\tau$			17.4
Hadronic decays		64.8	
$\tau^- \rightarrow h^- \nu_{\tau}$			11.5
$\tau^- \rightarrow h^- \pi^0 \nu_{\tau}$	ho(770)		25.9
$\tau^- \rightarrow \mathrm{h}^- \pi^0 \pi^0 \nu_{\tau}$	$a_1(1260)$		9.5
$\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$	$a_1(1260)$		9.8
$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_{\tau}$			4.8
Other			3.3

In HPS, neutral pions are reconstructed using $\eta \times \varphi$ strips,

Main backgrounds for hadronic taus

- ◆ Jets originating from quarks or gluons (τ_j), electrons (τ_e), and muons (τ_μ) can be misidentified as hadronic tau decays (τ_h)
- Each background have a characteristic signatures in the detector that can help to separate it from *τ_h*:
 - ° τ_j candidates, in general, have more hadronic activity, which can be detected in the isolation cone
 - τ_e candidates have specific patters in the calorimeter clusters
 - ° τ_{μ} candidates have substantial amount of matched hits in the muon chambers
- For each case, based on these typical signatures a set of the most discriminating variables can be defined
- Before DeepTau, 3 dedicated algorithms were developed within CMS to discriminate τ_h against given source of the background (*)

(*) See JINST 13 (2018) P10005 for more details

DNN-based tau ID

- To <u>efficiently</u> discriminate τ_h against main backgrounds, the detailed information from multiple sub-detectors within CMS must be exploited, including the **inner tracker**, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters, and the **muon chambers**
- DeepTau is a multiclass tau identification algorithm based on a convolutional deep neural network (DNN) [1]
- The training is performed on a balanced mix of ≈ 140 million τ_e , τ_μ , τ_h and τ_j candidates coming from Drell-Yan, $t\bar{t}$, W+jets and Z' 2017 MC samples
- Particle = PF candidate OR fully reconstructed electron OR fully reconstructed muon
- Particles belonging to the signal and isolation cones are split into two $\eta \times \varphi$ grids

[1] Submitted to JINST. Preprint at arXiv:2201.08458 (2022)

Particle	\mathbf{N}_{var}
PF charged hadron	27
PF neutral hadron	7
Electron	37
PF electron	22
PF photon	23
Muon	37
PF muon	23

DeepTau architecture

2022-07-08 ICHEP2022

DNN-based tau ID at CMS - K. Androsov

DeepTau: final discriminator and minimisation

The final discriminator is chosen to be

$$D_{\tau}^{\alpha}(\boldsymbol{p}) = \frac{p_{\tau}}{p_{\tau} + p_{\alpha}}, \text{ where } \alpha \in \{e, \mu, j\}$$

- A custom loss function based on the focal loss is defined in order to ensure the best performance for a wide tau ID efficiency range
- The loss function is minimised using NAdam algorithm (Adam with Nesterov momentum)
- The training is run for 10 epochs on GeForce RTX 2080
- Average speed $\approx 3 \, days/epoch$
- The best performance on the validation set is achieved after 7 epochs
- The corresponding NN is chosen as the final

DeepTau discrimination against jets

Working points of the discriminators are indicated by markers

DeepTau discrimination against electrons

Working points of the discriminators are indicated by markers

DeepTau discrimination against muons

Working points of the discriminators are indicated by markers

DeepTau performance for genuine τ_h

DeepTau performance for fake taus

Good modelling of fake τ s in the most parts of the parameter space

DNN-based tau ID at CMS - K. Androsov

Data-MC control plots

Using minimal preselection on muon and tau candidates:

- \clubsuit Well identified and isolated muon with $p_T>25$ GeV, $\left|\eta\right|<2.4, \left|dz\right|<0.2$ cm
- \clubsuit Tau candidates with $p_T > 20~{\rm GeV}, ~\left| \eta \right| ~< 2.3, ~\left| {\,dz} \right| ~< 0.2~{\rm cm}$

Selection using DeepTau IDs:

- Tight WP against jets
- VVLoose WP against electrons
- VLoose against muons

In both plots modelled contributions are fit to the data

Conclusions

- The DNN-based algorithm, **DeepTau**, to discriminate hadronic tau decays from the main background sources has been presented [1]
- Introduction of DeepTau ID provides considerable improvement in the performance in tau identification for Run 2

Jet mis-id probability reduces by more than 50%

- Reduction of mis-id probability for electrons (muons) is up to 95% (90%)
- DeepTau has already been used in several recent CMS physics analyses with Run 2 data
- Further improvement of the algorithm are ongoing for Run 3:
 DeepTau for online event selection
 - Use of domain adaptation techniques to improve the modelling
 - Other NN architectures (e.g. graph neural networks)

[1] Submitted to JINST. Preprint at <u>arXiv:2201.08458</u> (2022)