

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

# **Considerations for Fermilab Multi-MW Proton Facility in the DUNE/LBNF era**

S. Nagaitsev, J. Eldred, V. Shiltsev, A. Valishev, R. Zwaska

**ICHEP 2022** July 7, 2022

### Fermilab at present





Record Booster power 89 kW (8 GeV, 15 Hz)



# Fermilab Upcoming Upgrades: PIP-II 1.2MW

### Fermilab Accelerator Complex



New SRF linac raises Booster injection energy, new LBNF beamline.

7/7/2022

🛟 Fermilab

# PIP-II Linac & Upgrades (1.2 MW power on target)



Project started in 2016 (CD0) First beam in Booster: 2028 (plan) MI 1.2 MW beam on target: 2032 (projection)

#### 800 MeV H- linac

- Warm Front End
- SRF section

### Linac-to-Booster transfer line

• 3-way beam split

### **Upgraded Booster**

- 20 Hz, 800 MeV injection
- New injection area

Upgraded Recycler & Main Injector

• RF in both rings

#### **Conventional facilities**

- Site preparation
- Cryoplant Building
- Linac Complex
- Booster Connection



### **PIP-II Booster Power**

|                    | PIP                                 | PIP-II                              |
|--------------------|-------------------------------------|-------------------------------------|
| MI Beamline        | NuMI                                | LBNF                                |
| RR/MI Intensity    | $54 \cdot 10^{12} \text{ protons}$  | $65 \cdot 10^{12} \text{ protons}$  |
| RR/MI Rep. Time    | $1.333 \mathrm{\ s}$                | 1.2 s                               |
| MI Power           | 0.7 MW                              | 1.2 MW                              |
| Booster Intensity  | $4.5 \cdot 10^{12} \text{ protons}$ | $6.5 \cdot 10^{12} \text{ protons}$ |
| Booster Rep. Rate  | $15 \mathrm{~Hz}$                   | $20 \mathrm{~Hz}$                   |
| Booster Ext. Power | $85 \mathrm{kW}$                    | $165 \mathrm{kW}$                   |
| Injection Energy   | $0.4 \mathrm{GeV}$                  | $0.8  { m GeV}$                     |
| Efficiency         | 95%                                 | 98%                                 |

The primary purpose of the PIP-II is to inject into the Booster, and in turn power the high-energy proton complex including DUNE/LBNF program.

However, the PIP-II Linac is also designed to be CW-capable and the Booster only uses ~1.2% of the CW beam power!

- Two proposed "near-term" programs are discussed.

🛠 Fermilab

# **DUNE physics program**



- Unambiguous, high precision measurements of  $\Delta m_{32}^2$ ,  $\delta_{CP}$ ,  $\sin^2\theta_{23}$ ,  $\sin^22\theta_{13}$  in a single experiment
- Discovery sensitivity to CP violation, mass ordering,  $\theta_{23}$  octant over a wide range of parameter values
- Sensitivity to MeV-scale neutrinos, such as from a galactic supernova burst
- Low backgrounds for sensitivity to BSM physics including baryon number violation



# Proton Intensity Upgrade after PIP-II (construction complete ~2036)



7 S. Nagaitsev | Fermilab Multi-MW proton facility

# Fermilab Upcoming Upgrades Future 2.4MW



Booster prevents x2 PIP-II power, injection energy and transition-crossing limits

7/7/2022

🛟 Fermilab

# **Rapid-Cycling Synchrotron (RCS) Option**



### **8 GeV Linac Option**



# **Upgrade Design History & Process**

In 2008, Project X: 8 GeV SRF Linac, directly into Main Injector.

In 2010, Project X ICD-2: 2 GeV Linac, New 2-8 GeV RCS.

In 2018, <u>S. Nagaitsev and V. Lebedev</u>: updated version of ICD-2, DOI: 10.1142/S1793626818001450

In 2019, J. Eldred, V. Lebedev, A. Valishev: parametric study of RCS design.

In 2021, Science Working Group

<u>"Physics Opportunities for the Fermilab Booster Replacement"</u> arXiv:2203.03925

#### **Snowmass whitepapers**

- S. Nagaitsev, V. Lebedev , "A Cost-Effective Upgrade Path for the Fermilab Accelerator Complex", arXiv:2111.06932
- R. Ainsworth, J. Dey, J. Eldred, R. Harnik, J. Jarvis, et al. "An Upgrade Path for the Fermilab Accelerator Complex", arXiv:2106.02133
- S. Belomestnykh, M. Checchin, D. Johnson, D. Neuffer, S. Posen, E. Pozdeyev, V. Pronskikh, N. Solyak, V. Yakovlev. "An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade", arXiv:2203.05052

🗖 🛟 Fermilab

### Possible experiments in addition to DUNE-Phase II

| Experiment                                 | Dark<br>Sectors | V Physics | CLFV | Precision<br>tests | R&D  |             |
|--------------------------------------------|-----------------|-----------|------|--------------------|------|-------------|
| Lepton flavor violation: µ-to-e conversion |                 |           |      |                    |      |             |
| Lepton flavor violation: µ decay           |                 |           |      |                    |      | Rep         |
| PIP2-BD: ~GeV Proton beam dump             |                 |           |      |                    |      | lace        |
| SBN-BD: ~10 GeV Proton beam dump           |                 |           |      |                    |      | eme<br>Op   |
| High energy proton fixed target            |                 |           |      |                    |      | nt,         |
| Electron missing momentum                  |                 |           |      |                    |      | 202         |
| Nucleon form factor w/ lepton scattering   |                 |           |      |                    |      | 1 1 Itles   |
| Electron beam dumps                        |                 |           |      |                    |      | to          |
| Muon Missing Momentum                      |                 |           |      |                    |      | r the       |
| Muon beam dump                             |                 |           |      |                    |      |             |
| Physics with muonium                       |                 |           |      |                    |      | inni        |
| Muon collider R&D and neutrino factory     |                 |           |      |                    |      | lab         |
| Rare decays of light mesons                |                 |           |      |                    |      | В<br>О<br>С |
| Ultra-cold neutrons                        |                 |           |      |                    |      | Oste        |
| Proton storage ring for EDM and axions     |                 |           |      |                    |      | ۔<br>۲      |
| Tau neutrinos                              |                 |           |      |                    |      |             |
| Proton irradiation facility                |                 |           |      |                    |      |             |
| Test-beam facility                         |                 |           |      |                    |      |             |
|                                            |                 |           |      |                    | 36.1 | ermilab     |

(electrons)

# 'Laundry List' of Possible Experiments (RCS Scenario)

### 2 GeV CW-capable beam, 2mA

- mu2e-II type charged-lepton flavor violation experiment
- Low energy muon experiments (muonium, muon decay)
- REDTOP run-II/run-III program
- neutron-antineutron oscillation experiments
- EDM storage ring (with polarized proton source upgrade)

### 2 GeV pulsed beam from Storage Ring, ~1 MW

- PIP2-BD stopped pions, GeV-scale dark sector search
- AMF/PRISM charged-lepton flavor violation experiments

### 8 GeV RCS program, ~1 MW

- SBN-BD kaon decay-at-rest, intermediate energy dark sector search
- any successors to short-baseline neutrino program
- NuSTORM and muon-collider R&D
- proton irradiation facility
- muon beam dump experiment

### 120 GeV Slow-Extraction program, 8e12 over six second, once per min.

- DarkQuest dark matter spectrometer experiment
- M3 muon missing-momentum experiment
- test beam program

This is everything proposed at Snowmass! Not necessarily planned for Fermilab!

🛠 Fermilab

# 8-GeV Linac Program (to LBNF/DUNE)

| Performance Parameter                       | PIP  | PIP-II  | BRL     | Unit             |                    |
|---------------------------------------------|------|---------|---------|------------------|--------------------|
| Linac Beam Energy                           | 400  | 800     | 8000    | MeV              |                    |
| Linac Beam Current (chopped)                | 25   | 2       | 2       | mA               |                    |
| Linac Pulse Length                          | 0.03 | 0.54    | 2.2     | ms               | Injects at 20Hz    |
| Linac Pulse Repetition Rate                 | 15   | 20      | 20      | Hz               | inte MI ever eix   |
| Linac Upgrade Potential                     | N/A  | CW      | CW      |                  | into will over Six |
| 8 GeV Protons per Pulse (extracted)         | 4.2  | 6.5     | 27.5    | 10 <sup>12</sup> | 2.2ms pulses       |
| 8 GeV Pulse Repetition Rate                 | 15   | 20      | 20      | Hz               | •                  |
| Beam Power @ 8 GeV                          | 80   | 166     | 700     | kW               |                    |
| 8 GeV Beam Power to MI                      | 50   | 83-142* | 176-300 | kW               |                    |
| Beam Power to 8 GeV Program (pulsed mode)   | 30   | 83-24*  | 500-375 | kW               |                    |
| Main Injector Protons per Pulse (extracted) | 4.9  | 7.5     | 15.6    | 10 <sup>13</sup> |                    |
| Main Injector Cycle Time @ 120 GeV          | 1.33 | 1.2     | 1.2     | S                |                    |
| Main Injector Cycle Time @ 60 GeV           | N/A  | 0.7     | 0.7     | S                |                    |
| Beam Power @ 60 GeV                         | N/A  | 1       | 2.15    | MW               |                    |
| Beam Power @ 120 GeV                        | 0.7  | 1.2     | 2.5     | MW               |                    |

\*Total PIP-II with Booster 8 GeV power is 166 kW.

| Section                             | Length | Bending field or<br>RF frequency | Total bending angle<br>or Linac mode | Cavities/magnets/<br>cryomodules | Cryomodule<br>length |
|-------------------------------------|--------|----------------------------------|--------------------------------------|----------------------------------|----------------------|
| 1 GeV transport                     | 40 m   | 0 277 T                          | -45°                                 | ci yomounes                      | iength               |
| $1 \rightarrow 3 \text{ GeV Line}$  | 240  m | 650 MHz                          | CW                                   | 120/20/20                        | 0 02 m               |
|                                     | 240 m  |                                  | ew                                   | 120/20/20                        | 9.92 111             |
| 3 GeV bend                          | 200 m  | 0.13 T                           | 105°                                 |                                  |                      |
| $3 \rightarrow 8 \text{ GeV Linac}$ | 390 m  | 1300 MHz                         | Pulsed, 10 Hz                        | 224/28/28                        | 12.5 m               |
| 8 GeV injection                     |        | 0.055 T                          |                                      |                                  |                      |

7/7/2022

**‡**Fermilab

# 8-GeV Linac Program (8-GeV experiments)

| Performance Parameter                       | PIP  | PIP-II  | BRL     | Unit             |     |
|---------------------------------------------|------|---------|---------|------------------|-----|
| Linac Beam Energy                           | 400  | 800     | 8000    | MeV              |     |
| Linac Beam Current (chopped)                | 25   | 2       | 2       | mA               |     |
| Linac Pulse Length                          | 0.03 | 0.54    | 2.2     | ms               |     |
| Linac Pulse Repetition Rate                 | 15   | 20      | 20      | Hz               |     |
| Linac Upgrade Potential                     | N/A  | CW      | CW      |                  |     |
| 8 GeV Protons per Pulse (extracted)         | 4.2  | 6.5     | 27.5    | 10 <sup>12</sup> |     |
| 8 GeV Pulse Repetition Rate                 | 15   | 20      | 20      | Hz               | 0 ( |
| Beam Power @ 8 GeV                          | 80   | 166     | 700     | kW               | 0-0 |
| 8 GeV Beam Power to MI                      | 50   | 83-142* | 176-300 | kW               | 2µ  |
| Beam Power to 8 GeV Program (pulsed mode)   | 30   | 83-24*  | 500-375 | kW               |     |
| Main Injector Protons per Pulse (extracted) | 4.9  | 7.5     | 15.6    | 10 <sup>13</sup> |     |
| Main Injector Cycle Time @ 120 GeV          | 1.33 | 1.2     | 1.2     | S                |     |
| Main Injector Cycle Time @ 60 GeV           | N/A  | 0.7     | 0.7     | S                |     |
| Beam Power @ 60 GeV                         | N/A  | 1       | 2.15    | MW               |     |
| Beam Power @ 120 GeV                        | 0.7  | 1.2     | 2.5     | MW               |     |

-GeV pulsed us -> 2ms

**‡** Fermilab

\*Total PIP-II with Booster 8 GeV power is 166 kW.

| Section                             | Length | Bending field or | Total bending angle | Cavities/magnets/ | Cryomodule |
|-------------------------------------|--------|------------------|---------------------|-------------------|------------|
|                                     |        | RF frequency     | or Linac mode       | cryomodules       | length     |
| 1 GeV transport                     | 40 m   | 0.277 T          | -45°                |                   |            |
| $1 \rightarrow 3 \text{ GeV Linac}$ | 240 m  | 650 MHz          | CW                  | 120/20/20         | 9.92 m     |
| 3 GeV bend                          | 200 m  | 0.13 T           | 105°                |                   |            |
| 3 → 8 GeV Linac                     | 390 m  | 1300 MHz         | Pulsed, 10 Hz       | 224/28/28         | 12.5 m     |
| 8 GeV injection                     |        | 0.055 T          |                     |                   |            |

**15** S. Nagaitsev | Fermilab Multi-MW proton facility

# **RCS Scenarios**

#### "Design Considerations for Fermilab Multi-MW Proton Facility" white paper

| Parameter                     | PIP-II Booster      | ICD-2             | BSR           |
|-------------------------------|---------------------|-------------------|---------------|
| Linac Energy                  | $0.8 { m GeV}$      | $2  \mathrm{GeV}$ | 2 GeV         |
| Minimum Linac Current         | 2 mA                | 2 mA              | 2 mA          |
| GeV-scale Accumulator Ring    | Optional            | Optional          | Required      |
| RCS Energy                    | 8 GeV               | 8 GeV             | 8 GeV         |
| RCS Intensity                 | 6.5 e12             | 26 e12            | 37 e12        |
| RCS Circumference             | 474.2 m             | 553.2 m           | 570 m         |
| RCS Rep. Rate                 | 20 Hz               | 10 Hz             | 20 Hz         |
| Number of Batches             | 12                  | 6                 | 5             |
| Accumulation Technique        | Slip-stacking       | Conventional      | Conventional  |
| 8 GeV Accumulation            | Recycler            | Recycler          | Main Injector |
| Available RCS Power           | 80 kW               | 170 kW            | 750  kW       |
| Main Injector Intensity       | 80 e12              | 156 e12           | 185 e12       |
| Main Injector Cycle Time      | 1.2 s               | 1.2 s             | 1.4 s         |
| Main Injector Power (120 GeV) | $1.2 \ \mathrm{MW}$ | 2.4 MW            | 2.4 MW        |



# **RCS Scenarios (ramp rate and 8 GeV program)**

#### "Design Considerations for Fermilab Multi-MW Proton Facility" white paper

| Parameter                     | PIP-II Booster | ICD-2               | BSR           |
|-------------------------------|----------------|---------------------|---------------|
| Linac Energy                  | $0.8 { m GeV}$ | $2  \mathrm{GeV}$   | 2 GeV         |
| Minimum Linac Current         | 2 mA           | 2 mA                | 2 mA          |
| GeV-scale Accumulator Ring    | Optional       | Optional            | Required      |
| RCS Energy                    | 8 GeV          | 8 GeV               | 8 GeV         |
| RCS Intensity                 | 6.5 e12        | 26 e12              | 37 e12        |
| RCS Circumference             | 474.2 m        | $553.2 \mathrm{~m}$ | 570 m         |
| RCS Rep. Rate                 | 20 Hz          | 10 Hz               | 20 Hz         |
| Number of Batches             | 12             | 6                   | 5             |
| Accumulation Technique        | Slip-stacking  | Conventional        | Conventional  |
| 8 GeV Accumulation            | Recycler       | Recycler            | Main Injector |
| Available RCS Power           | 80 kW          | 170  kW             | 750 kW        |
| Main Injector Intensity       | 80 e12         | 156 e12             | 185 e12       |
| Main Injector Cycle Time      | 1.2 s          | 1.2 s               | 1.4 s         |
| Main Injector Power (120 GeV) | 1.2 MW         | $2.4 \mathrm{MW}$   | 2.4 MW        |

ICD-2 RCS is more cost-effective, BSR is more ambitious

BSR delivers more for 8 GeV, compatible with a second LBNF target station

🛟 Fermilab



# **RCS Scenarios (required rings)**

#### "Design Considerations for Fermilab Multi-MW Proton Facility" white paper

| Parameter                     | PIP-II Booster | ICD-2             | BSR           |
|-------------------------------|----------------|-------------------|---------------|
| Linac Energy                  | $0.8 { m GeV}$ | 2 GeV             | 2 GeV         |
| Minimum Linac Current         | 2 mA           | 2 mA              | 2 mA          |
| GeV-scale Accumulator Ring    | Optional       | Optional          | Required      |
| RCS Energy                    | 8 GeV          | $8 { m GeV}$      | 8 GeV         |
| RCS Intensity                 | 6.5 e12        | 26 e12            | 37 e12        |
| RCS Circumference             | 474.2 m        | 553.2 m           | 570 m         |
| RCS Rep. Rate                 | 20 Hz          | 10 Hz             | 20 Hz         |
| Number of Batches             | 12             | 6                 | 5             |
| Accumulation Technique        | Slip-stacking  | Conventional      | Conventional  |
| 8 GeV Accumulation            | Recycler       | Recycler          | Main Injector |
| Available RCS Power           | 80 kW          | 170 kW            | 750 kW        |
| Main Injector Intensity       | 80 e12         | 156 e12           | 185 e12       |
| Main Injector Cycle Time      | 1.2 s          | 1.2 s             | 1.4 s         |
| Main Injector Power (120 GeV) | 1.2 MW         | $2.4 \mathrm{MW}$ | 2.4 MW        |

ICD-2 scenario require Recycler (or similar), maintains RR experimental program.

🛟 Fermilab

7/7/2022

BSR scenario requires either an Accumulator Ring or 5 mA linac upgrade.

#### "Design Considerations for Fermilab Multi-MW Proton Facility" white paper

| Parameter                     | PIP-II Booster     | Staging?              | ICD-2               | BSR           |
|-------------------------------|--------------------|-----------------------|---------------------|---------------|
| Linac Energy                  | $0.8 \mathrm{GeV}$ | $\sim 1.6  { m GeV}$  | $2 \mathrm{GeV}$    | 2 GeV         |
| Minimum Linac Current         | 2 mA               | 2 mA                  | 2  mA               | 2 mA          |
| GeV-scale Accumulator Ring    | Optional           | Optional              | Optional            | Required      |
| RCS Energy                    | 8 GeV              | 8 GeV                 | 8 GeV               | 8 GeV         |
| RCS Intensity                 | $6.5 \ e12$        | $\sim 20 \text{ e}12$ | 26 e12              | 37 e12        |
| RCS Circumference             | 474.2 m            | $\sim 550~{\rm m}$    | $553.2 \mathrm{~m}$ | 570 m         |
| RCS Rep. Rate                 | 20 Hz              | 10 Hz                 | 10 Hz               | 20 Hz         |
| Number of Batches             | 12                 | 6                     | 6                   | 5             |
| Accumulation Technique        | Slip-stacking      | Conventional          | Conventional        | Conventional  |
| 8 GeV Accumulation            | Recycler           | Recycler              | Recycler            | Main Injector |
| Available RCS Power           | 80 kW              | $\sim 60 \text{ kW}$  | 170 kW              | 750 kW        |
| Main Injector Intensity       | 80 e12             | 116 e12               | 156 e12             | 185 e12       |
| Main Injector Cycle Time      | 1.2 s              | 1.2 s                 | 1.2 s               | 1.4 s         |
| Main Injector Power (120 GeV) | 1.2 MW             | 1.8 MW                | $2.4 \mathrm{MW}$   | 2.4 MW        |

Possible Staging with 1.8 MW, smaller Linac upgrade, PIP-II era Main Injector RF. Optionally, could be designed to be upgradeable to either of 2.4 MW scenario.

🚰 Fermilab

# Summary

PIP-II upgrade, massive potential for GeV-scale experimental program

- Proposed ~100kW mu2e-II program.
- Proposed ~100kW PAR / dark sector program
- A lot of other ideas are out there muons, neutrons, polarized protons.

Longterm planning for a subsequent Proton Intensity Upgrade.

- Engaging Snowmass and the wider physics community.
- Robust planning helps make wise decisions, maintain flexibility.
   ICD-2 RCS: Well-developed proposal, focused on 2.4 MW for LBNF.
   BSR RCS: More challenging injection/linac, much more 8-GeV power.
   8-Gev Linac: R&D for 8-GeV injection, potential for high CW power.

What will be the **future 0.8-2 GeV** experimental program?

- power, beam structure, timeline.

What will be the **future 8 GeV** experimental program?

- power, beam structure, timeline.
- future role of Recycler Ring and Delivery Ring.

Fermilab