

Study status of the CEPC Machine-Detector Interface(MDI) and Interaction Region(IR)

Haoyu SHI

On behalf of the CEPC MDI Working Group

ICHEP 2022, Accelerator Parallel Session

2022.07.07, Bolgona, Italy(Zoom)

- Introduction
- Current Study Status
 - Physics Design
 - Layout/Components/Parameters
 - Heat Deposition/Radiation Levels
 - Engineering effort
 - Mechanical Design of components (beampipe, magnets, cryostat, connector...etc)
 - Integration/Installation Scheme
- Summary & Outlook

Introduction

- MDI stands for "Machine Detector Interface"
 - Interaction Region and other components
 - 2 IPs
 - 33mrad Crossing angle
- Flexible optics design
 - Common Layout in IR for all energies
 - High Luminosity, low background impact, low error
 - Stable and easy to install, replace/repair

	(ttbar)	Higgs	W	Z
Number of Ips		2	-	
Circumference [km]		100.	0	
SR power per beam [MW]		30		
Half crossing angle at IP [mrad]		16.5	5	
Bending radius [km]		10.7	7	
Energy [GeV]	180	120	80	45.5
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037
Piwinski angle	1.21	5.94	6.08	24.68
Bunch number	35	249	1297	11951
Bunch population [10^10]	20	14	13.5	14
Beam current [mA]	3.3	16.7	84.1	803.5
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	27/1.4
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36	1 Desi	gn 35
Bunch length (SR/total) [mm]	2.2/2.9	2.2/2	red De-	2.5/8.7
Energy spread (SR/total) [%]	0.15/0.20	1 Improv	o.07/0.14	0.04/0.13
Energy acceptance (DA/RF) [%]	2.3 204		1.2/2.5	1.3/1.7
Beam-beam parameters (ksix/ksiy)	0.071	0.015/0.11	0.012/0.113	0.004/0.122
RF voltage [GV]	10	2.2	0.7	0.12
RF frequency [MHz]	650	650	650	650
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202
Beam lifetime [min]	18	12.3	55	80
Hour glass Factor	0.89	0.9	0.9	0.97
Luminosity per IP[1e34/cm^2/s]	0.5	(5.0)	16	(115)
		67% 介		259%

ICHEP2022, Accelerator Session, Bologna(Zoom), H.Sni(sniny@inep.ac.cn)

MDI Parameter Table

S. Bai

	range	Peak filed in coil	Central filed gradient	Bending angle	length	Beam stay clear region	Minimal distance between two aperture	Inner diameter	Outer diameter	Critical energy (Horizontal)	Critical energy (Vertical)	SR power (Horizontal)	SR power (Vertical)
L*	0~1.9m				1.9m								
Crossing angle	33mrad												
MDI length	±7m												
Detector requirement of accelerator components in opening angle	8.11°												
QDa/QDb		3.2/2.8 T	141/84.7T/ m		1.21m	15.2/17.9mm	62.71/105.28 mm	48mm	59mm	724.7/663.1ke V	396.3/263k eV	212.2/239.23 W	99.9/42.8 W
QF1		3.3T	94.8T/m		1.5m	24.14mm	155.11mm	56mm	69mm	675.2keV	499.4keV	472.9W	135.1W
Lumical	0.95~1.11m				0.16m			57mm	200mm				
Anti-solenoid before QD0		8.2T			1.1m			120mm	390mm				
Anti-solenoid QD0		3T			2.5m			120mm	390mm				
Anti-solenoid QF1		3T			1.5m			120mm	390mm				
Beryllium pipe					±120mm			28mm					
Last B upstream	64.97~153.5m			0.77mrad	88.5m					33.3keV			
First B downstream	44.4~102m			1.17mrad	57.6m					77.9keV			
Beampipe within QDa/QDb					1.21m							1.19/1.31W	
Beampipe within QF1					1.5m							2.39W	
Beampipe between QD0/QF1					0.3m							26.5W	

ICHEP2022, Accelerator Session, Bologna(Zoom), H.Shi(shihy@ihep.ac.cn)

Physical Design

- Interaction Region Layout/Parameters
 - L* = 1.9m / Detector Acceptance = 0.99
- Estimation of the Radiation Level/Heat Deposition

The length of Interaction Region is -7m~7m at TDR Phase

New Beampipe Design – Half Detector pipe

ICHEP2022, Accelerator Session, Bologna(Zoom), H.Shi(shihy@ihep.ac.cn)

Interfaces between pipe and LumiCal

With LumiCal:

- Will not be putted at detector beampipe region.
 - Therefore, the material of extended beam pipe could be changed.
- The material and thickness(material budget) of the flange&bellow needs to be calculated.

Heat Deposition

We are considering to change the material beyond bellows to Al due to demands of LumiCal, it wouldn't affect heat deposition to much

2022/7/7

- Simulate each background separately
- Whole-Ring generation for single beam BGs
- Multi-turn tracking(50 turns) ٠
 - Using built-in LOSSMAP with one step ahead output
 - SR emitting/RF on
 - Radtaper on ٠
 - No detector solenoid
- Errors implemented
 - High order error for magnets •
 - Beam-beam effect
- 2 IR considered(sum)
- Plan to study the photon bkgs ٠ generated during all processes, both single beam and luminosity related.

Beam Loss BG

Injection BG

Background	Generation	Tracking	Detector Simu.	
Synchrotron Radiation	<u>BDSim</u>	BDSim/Geant4		
Beamstrahlung/Pair Production	Guinea-Pig++			
Beam-Thermal Photon	PyBTH[Ref]		<u>Mokka/CEPCSW</u>	
Beam-Gas Bremsstrahlung	PyBGB[Ref]	SAD		
Beam-Gas Coulomb	BGC in <u>SAD</u>			
Radiative Bhabha	BBBREM			

2022/7/7

SR BG & Mitigation

- The SR must be dealt with high priority when designing the circular machine. At CEPC, there would be no SR photons hitting the central beam pipe directly in normal conditions
- However, some secondaries generated within QD would hit the detector beampipe, even the beryllium part. Therefore, the mitigation methods must be studied. We compared several methods based on CDR, and we believe the results can also be used on TDR with optimization.

Mitigation of the BG - Collimator

S. Bai

- Beam stay clear region: 18 σ_x +3mm, 22 σ_y +3mm
- Impedance requirement: slope angle of collimator < 0.1
- 4 sets of collimators were implemented per IP per Ring(16 in total)
 - 2 sets are horizontal(4mm radius), 2 sets are vertical(3mm radius).
- One more upstream horizontal collimator sets were implemented to mitigate the Beam-Gas background

name	Position	Distance to IP/m	Beta function/m	Horizontal Dispersion /m	Phase	BSC/2/m	Range of half width allowed/m m
APTX1	D1I.785	44611	20.7	0.12	164.00	0.006	1~6
APTX2	D1I.788	44680	20.7	0.12	164.25	0.006	1~6
APTY1	D1I.791	44745	105.37	0.12	165.18	0.0036	0.156~3.6
APTY2	D1I.794	44817	113.83	0.12	165.43	0.0036	0.156~3.6
APTX3	D10.5	1729.66	20.7	0.06	6.85	0.00182	1~6
APTX4	D10.8	1798.24	20.7	0.12	7.10	0.00182	1~6
APTY3	D10.10	1832.52	20.7	0.25	7.22	0.00182	0.069~3.3
APTY4	D10.14	1901.1	20.7	0.25	7.47	0.00182	0.069~3.3
APTX5	DMBV01IR U0	56.3	196.59	0	362.86	0.01178	2.9~11.78

0.16

0.14

0.00

Beam Lost Particle Distribution

-2

Position in Interaction Region/meter

BGB_Higgs

BGB_Higgs_TDR_4Co BGB_Higgs_TDR_5Co

TDR Estimation – with safety factor of 10

- For fast estimation, we try to perform some scaling based on CDR results according to Luminosity.
- The full-detector TDR simulation has been started.
- We plan to have double check on detector simulation(Mokka/CEPCSW/FLUKA)
 - We learn that the background impact on LumiCal must be studied.

Mechanical Design of the detector beam pipe

Outer Be Layer: 0.15mm Gap: 0.35mm Inner Be Layer: 0.2mm Thickness: ~0.2%X₀

- Coolant might be paraffin or water.
 - If water was chosen, then the corrosion on Be must be studied.
- Preliminary analysis shows that the dynamic temperature/pressure could meet the requirements.

Engineering efforts on several key components

Preliminary Installation Scheme

- One of the preliminary (conceptual) installation scheme of the CEPC detector.
 - Still facing lots of troubles and challenges.
 - Needs to be optimized further.

1. End yoke assemble

2. Iron yoke base assemble

3. Barrel ion yoke assemble

4. Temporary mounting base assemble

5. HCAL assemble

9.ECAL is pushed in

6. HCAL is pushed in

10. Remove the temporary base

7. Superconducting solenoid assemble

11. End yoke is push in

8. Superconducting solenoid is pushed in

ICHEP2022, Accelerator Session, Bologna(Zoom), H.Shi(shihy@ihep.ac.cn)

- We are moving our design to TDR phase.
 - Layout & Physics design has been updated.
 - The heat deposition calculation was done.
 - The estimation of radiation level caused by BG is under simulation.
 - The mechanical design is updating, including the thermal analysis based on the deposited heat.
- The optimization and validation of current design is always needed.
 - The BESIII backgrounds experiment was done last/this summer. The data has been taken and under analysis.
 - Validate our BG simulation codes using BEPCII and SuperKEKB.

Backup

Physics Gains for 20mm Be

Inputs – Accelerator Parameters

	Higgs	W	Z (3T)	Z (2T)		
Number of IPs		2	2 (01)			
Beam energy (GeV)	120	80	4	5.5		
Circumference (km)		100	0			
Synchrotron radiation	1.52	0.24		0.026		
loss/turn (GeV)	1.73	0.34	0.	036		
Crossing angle at IP (mrad)		16.5 ×	2			
Piwinski angle	3.48	7.0	2	3.8		
Particles /bunch Ne (1010)	15.0	12.0	5	3.0		
Bunch number	242	1524	12000 (10% gap)		
Bunch spacing (ns)	680	210		25		
Beam current (mA)	17.4	87.9	40	51.0		
Synch. radiation power (MW)	30	30	1	6.5		
Bending radius (km)		10.7				
Momentum compaction (10-5)		1.11				
β function at IP $\beta_x * / \beta_y * (m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001		
Emittance x/y (nm)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016		
Beam size at IP $\sigma_x/\sigma_y(\mu m)$	20.9/0.06	13.9/0.049	6.0/0.078	6.0/0.04		
Beam-beam parameters ξ_x/ξ_y	0.018/0.109	0.013/0.123	0.004/0.06	0.004/0.079		
RF voltage VRF (GV)	2.17	0.47	0.10			
RF frequency fRF (MHz)	650					
Harmonic number		216810	5			
Natural bunch length σ_{z} (mm)	2.72	2,98	- cil	<u>ın</u>		
Bunch length $\sigma_{\bar{z}}$ (mm)	4.4		Jesi	2		
Damping time $\tau_x / \tau_y / \tau_E$ (ms)	AC	oline .	549.5 /84	49.5/425.0		
Natural Chromaticity	n Bas		-491/-1161	-513/-1594		
Betatro	N P	363.10/36	5.22			
s 2018 CF	0.065	0.040	0.	028		
H (2 cell) (kt	0.46	0.75	1	.94		
Natural energy spread (%)	0.100	0.066	0.	038		
Energy spread (%)	0.134	0.098	0.080			
Energy acceptance requirement (%)	1.35	0.90	0.49			
Energy acceptance by RF (%)	2.06	1.47	1.70			
Photon number due to beamstrahlung	0.082	0.050	0.023			
Beamstruhlung lifetime /quantum lifetime [†] (min)	80/80	>400				
Lifetime (hour)	0.43	1.4	4.6 2.5			
F (hour glass)	0.80	0.94	4 0.99			
Luminosity/IP (10 ³⁴ cm ⁻² s ⁻¹)	(3)	10	17 (32			

	(ttbar)	Higgs	W	Z
Number of Ips		2		•
Circumference [km]		100.	0	
SR power per beam [MW]		30		
Half crossing angle at IP [mrad]		16.5	5	
Bending radius [km]		10.7	7	
Energy [GeV]	180	120	80	45.5
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037
Piwinski angle	1.21	5.94	6.08	24.68
Bunch number	35	249	1297	11951
Bunch population [10^10]	20	14	13.5	14
Beam current [mA]	3.3	16.7	84.1	803.5
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	27/1.4
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36	nesi	Gn (35
Bunch length (SR/total) [mm]	2.2/2.9	2.2/2	red Des	2.5/8.7
Energy spread (SR/total) [%]	0.15/0.20	1 Improv	o.07/0.14	0.04/0.13
Energy acceptance (DA/RF) [%]	<u>2.3</u> 20	<i>orz</i> .2	1.2/2.5	1.3/1.7
Beam-beam parameters (ksix/ksiy)	0.071	0.015/0.11	0.012/0.113	0.004/0.127
RF voltage [GV]	10	2.2	0.7	0.12
RF frequency [MHz]	650	650	650	650
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202
Beam lifetime [min]	18	12.3	55	80
Hour glass Factor	0.89	0.9	0.9	0.97
Luminosity per IP[1e34/cm^2/s]	0.5	(5.0)	16	(115)
		67% 介		259%

[†] include beam-beam simulation and real lattice

Inputs – Detector Designs

Map of the MDI Study

Accelerator

Detector

IP Feedback	
BG Simulation	Central Beam Pipe
LumiCal	Vertex Detector
Vacuum Chamber	LumiCal
SR Masks	Silicon Tracker
QD0/QF1	ТРС
Anti-Solenoid	Hcal
Cryostats	Ecal
BPMs	Solenoid
Instability&Impendance	Yoke
Cooling	Muon Detector
Shielding	Hall
Assembly&Supporting	BG Simulation&Shielding
Alignment	Software Geometry
Connecting System	Alignment&Assembly
Vacuum pumps	Electronics
Last Bending Magnet	Cryogenic
Collimators	Radiation Protection
Control	Booster

Thermal Analysis - CDR

- Pressure drop:
 - Be pipe : 19.8 kPa
 - Al pipe : 19.3 kPa
- TEMP rise:
 - Be pipe : 3.2 °C (between the inlet and the outlet)
 - Transition: 13.3 °C
 - Al pipe : 6.3 °C
- Temperature rise and pressure drop are in a safe range

Mechanical Calculation and Optimization-CDR

Refer to Haijing's Talk

-0.0020429 Min

Detailed Beampipe Design

Streamline comparison chart

The range between 2 cryostat chambers would be -1.11m~1.11m

SR from solenoid combined field

S. Bai

- Due to the sol+anti-sol field strength quite high, maximum~4.24T, transverse magnetic field component is quite high.
- SR from vertical trajectory in sol+anti-sol combined field should be taken into account.

Vertical SR power distribution

- SR fan is focused in a very narrow angle from
 - -116urad to 131urad
- SR will not hit Berryllium pipe, and no background to detector.
- SR will hit the beam pipe ~213.5m downstream from IP
- Water cooling is needed.

ICHEP2022, Accelerator Session, Bologna(Zoom), H.Shi(shihy@ihep.ac.cn)

- > High gradient superconducting quadrupole magnet is a key device of CEPC.
- As a first step, research on key technologies of 0.5m single aperture QD0 short model has started (NbTi, 136T/m), in collaboration with HeFei KEYE.
- Including: quadrupole mechanical design, coil winding technology, fabrication of quadrupole coil with small diameter, stress applying and monitoring, quadrupole magnet assembly, field measurement technology, etc.

Fabrication of Rutherford cable

Coil heating and curing system

Coil winding machine

Coils assembly system

- After a series of exploration and improvement, several SC quadrupole coils have been wound.
- > The coils are cured under a certain pressure and temperature.

Four SC quadrupole coils have been assembled with the stainless collar. Coil resistance and ground insulation tests have been performed.

> Next step, iron yoke will be assembled with the collared-coil.

> Manufacture of 0.5m single aperture QD0 short model will be completed in June.

Shielding of the Coils in Magnets

- Beam loss in the downstream IR with a large amount, due to the process of radiative bhabha scattering, beamstrahlung, beam-gas scattering, beam thermal photon scattering.
- Radiation dose may damage the SC magnet coil and the detector.

- Pure tungsten IR beam pipe with 4mm thickness without cooling taken into account, simulate the Absorbed Dose on Coil (Region)
- Only Beam-Gas beam loss is taken into account until now
- Take the loss rate calculated by SAD into account:
 - ~0.00166 Gy/s(0.166rad/s)
 - ~14.35 Gy/day
 - ~36662.49 Gy/lifetime(Higgs plans to run 7 years)
 - Limit is 100000 Gy/lifetime

