

Snowmass'21 Accelerator Frontier:

Summary of Discussions on Future HEP Facilities in the US

ICHEP'2022 - Bologna, Italy, July 8, 2022

Vladimir Shiltsev,
Stephen Gourlay, Tor Raubenheimer
(Snowmass'21 AF Conveners)

What is Snowmass:

"Snowmass is a particle physics community study"

07/08/2022https://www.snowmass21.org/

Previous Snowmass/P5 (2013/14)

Major accelerator-related recommendations:

Engage in the ILC in Japan, contribute if it goes

Build >1 MW proton source PIP-II for v LBNF/DUNE

Provide beams for g-2 and mu2e experiments

Reassess Muon Accelerator Program and MICE

done, in process

- Beam Physics (incl. IOTA and PIP-III)
- Sources and Targets (incl. multi-MW)
- RF (high-Q, high-G, low cost)
- Magnets and materials (16 T, low cost)
- Advanced acceleration (towards wakefield colliders)

process

process

process

in process

Building for Discovery

Few Examples – Facilities/Programs

(under construction) AUP LHC Nb₃Sn IR quads for HI-LHC

CD-3 project be ready LS3

FNAL

BNL

LBNL

(construction started) PIP-II 800 MeV proton SRF linac

@FNAL

Goal: 1.2MW for LBNF/DUNE

Beam to Booster in 2029

30% Int'l contrib.

(completed) ILC@Fermilab

1st 1.3GHz full CM with beam

FAST facility

ILC type beam

31.5MeV/m

255 MeV/CM

= G, Q₀ specs

(ongoing) muon beams for g-2 and mu2e experiments

FNAL

8 GeV p's \rightarrow target $\rightarrow \mu$'s Run-I (2021) major muon g-2 discovery

Few Examples – Accelerator R&D

Record 14.5T Dipole (at FNAL, part of the US MDP)

Nb3Sn conductor

Stress control

MAP/MICE: Ionization cooling of muons (140 MeV/c, RAL, UK)

FACET-II User facility (SLAC)

BELLA: PWFA records (LBNL)

Unique beam 10 GeV 1 nC 1x1x1 μm

8 GeV/0.2m staging p.o.p 5+0.1 GeV 07/08/2022

IOTA Ring/Optical Stochastic cooling *e*- (100 MeV, FNAL)

soon – experiments with p's

THz bandwidth

(back to current) Snowmass'2021

- Started in 2020→ ~1 yr COVID delay → finish 2022:
 - Community of ~3000 people, incl. international
 - Snowmass CSS Workshop in Seattle next week (please, join!) >600 people
 - Final report to P5, that starts in September'22 (for ~ a year)
- 10 "Frontiers": Energy, Theory, Cosmic, ... Accelerator

Accelerator Frontier – Key Questions:

- 1. What is needed to advance the physics?
- 2. What is currently available (state of the art) around the world?
- 3. What new accelerator facilities could be available on the next decade (or next next decade)?
- 4. What R&D would enable these future opportunities?
- 5. What are the time and cost scales of the R&D and associated test facilities as well as the time and cost scale of the facilities?

Accelerator Frontier Conveners

Steve Gourlay (LBNL)

Tor Raubenheimer (SLAC)

Vladimir Shiltsev (FNAL)

Topical Group		Topical Group co-Conveners			
AF01	Beam Phys & Accel. Education	Z. Huang (Stanford)	M. Bai (SLAC)	S. Lund (MSU)	
AF02	Accelerators for Neutrinos	J. Galambos (ORNL)	B. Zwaska (FNAL)	G. Arduini (CERN)	
AF03	Accelerators for EW/Higgs	F. Zimmermann (CERN)	Q. Qin (ESRF)	G.Hoffstaetter (Cornell) A.Faus-Golfe (IN2P3)	
AF04	Multi-TeV Colliders	M. Palmer (BNL)	A. Valishev (FNAL)	N. Pastrone (INFN) (IHEP)	J.Tang
AF05	Accelerators for PBC and Rare Processes	E. Prebys (UC Davis)	M. Lamont (CERN)	Richard Milner (MIT)	
AF06	Advanced Accelerator Concepts	C. Geddes (LBNL)	M. Hogan (SLAC)	P. Musumeci (UCLA)	R. Assmann (DESY)
AF07	Accelerator Technology R&D				
	Sub-Group RF	E. Nanni (LBNL)	H.Weise (DESY)	S. Belomestnykh (FNAL)	
	Sub-Group Magnets	G. Sabbi (LBNL)	S. Zlobin (FNAL) S. Izquierdo Bermu		z (CERN)
	Sub-Group Targets/Sources	C. Barbier (ORNL)	Y. Sun (ANL)	Frederique Pellemoine (FNAL)	

Snowmass Activities: pre-Seattle

	Proponents' Inputs	Letters-Of-	Interest 257	White Pap 114	ers
•	AF1: Beam Physics, Education	n & General	61	24	
•	AF2: Accelerators for Neutri	nos	18	9	
•	AF3: Accelerators for EW/Hi	ggs	32	11	
•	AF4: Multi-TeV Colliders		56	10	
•	AF5: Accelerators for PBC ar	d Rare Proc.	37	7	
•	AF6: Advanced Accelerator (Concepts	71	10	
•	AF7: Accelerator Technology	/ R&D	137	43	

- ❖ > 30 Topical Workshops
- ❖ 8 Cross-Frontier Agoras
 - ❖ All types of colliders: ee, linear/circular, mumu, pp, advanced
 - Experiments and acceleratosr for rare processes physics
- Special cross-Frontier Groups (e.g., AF-EF-TF)
 - eeCollider Forum, Muon Collider Forum, Implementation Task Force

Accelerator Frontier Summary

- Now Draft Report Only, will be finalized in Seattle
- AF Topical Group, ITF and Fora Summaries mostly available
- Below, only few topics will be briefly covered:
 - Accelerators for Neutrinos
 - Accelerators for Rare Processes/DM Searches
 - Future Colliders
 - Key Accelerator R&D
- For each key "messages" (vision):
 - Proposed directions ("what")
 - Timeline ("when") e.g., by 2030, after 2030
 - Challenges ("what's needed")

1. Multi-MW v Beams for DUNE

LBNF/DUNE Project – Phase I:

- By 2032: 1.2 MW proton beam (120 GeV) on target + near ν-detector + 20 kton LAr ν-detector in Lead, SD
- Expected rate of "physics" outcome up to ~3 σ in δ_{CP} , in the first 6 years (also Δm^2_{32} , $\sin^2\theta_{23}$, $\sin^22\theta_{13}$)
- To get to ~5σ will get too long, plus competitor experiment Hyper-K in Japan

Proposed Plan - LBNF/DUNE Phase II:

- By 2038: ~2.4 MW proton beam (120 GeV) on target +
 new near V-detector + extra 20 kton Lar v-detector
- Expected to get to $\sim 5\sigma$ in δ_{CP} in the following 6 years
- Accelerator options proposed/under active study now:
 - (understand max performance and limits with PIP-II linac)
 - New 8 GeV RCS [two options] with/w.o. new 1-3 GeV linac upgrade
 - New 8 GeV linac with or without new 8 GeV accumulator ring
 - In any case need upgrade of MI RF power and new m-MW targets
 - See S.Nagaitsev talk earlier today
 - Fermilab has formed a special design group

2. >20 Proposed Experiments For Rare Processes

(most via Snowmass Whitepapers)

DM searches, Axion searches, CLFV experiments, muons, light mesons, beam

dump experiments... calls for corresponding beam facilities @ FNAL, SLAC, Jlab

Experiment	Experiment type	Primary beam particle	Beam Energy [GeV]	Beam power [kW]	Beam time structure	
Proton Storage Ring: EIM and Awar Searches	Precision tests, Dark Matter	proton	0.7 GeWit beam momentum	1e11 polarized protons per MI	Fil te ring every 1000s	
Pyeis with Muonium	Precision tests	proton (producing surface muons)	0.8 GeV	Tet3pm1 POEper second	CW	
Nucleon Bectromagnetic Form Factors from Lepton Scattering	Neutrino	electron or proton (producing muons)	0.85 GeV to 2 GeV	1 nA to 10 microA for electrons, 10°7 to 10°8 per second for mucro	A continuous or pulsed structure (initially with a duty factor of 1% or larger) should be sufficient	
Rare Deays of Light Mesons (REDTOP)	Precision tests	proton	18-22 GeV (Runit), 08- 092 (Runit), 17 (Runiti)	003-005 (Run I), 200 (Runs II and III)	OV, slow extraction for Run I	
Ultra-cold Neutron Source for Fundamental. Physics Experiments, Including Neutron-Anti-Neutron Oscillations	Precision tests	proton	88-2	1,000	quasi-continuous	
CIFV with Muon Decays	CLFV	proton	Not critical 0.8 to a few GeV	100 or more	continous beam on the timescale of the muon lifetime i.e. proton pulses separated by a microsecond or less. The more continuous the better	
Mide II	CLFV	proton	1 to 3	100	pulse width 10s of ns or better separated by 200 to 2000 ns. Floolble time structure and minimal pulse-to-pulse variation	
Fixed Turget Searches for new physics with O(1 GeV) Proton Bears Dump	Dark Sector, Neutrino	proton	8.8 to 15 GeV	100 or more	(O) I micro s) pulse with for neutrino measurements, <o(30 104-5)="" befor="" dark="" duty="" factor<="" for="" m)="" neutro="" or="" p="" pulse="" searches,="" with=""></o(30>	
FESIAN Carged Lepton Flavor Violation	CLFV	proton	1-3 GeV	up to 2MW	Ens. pulses at a repirate of about 1 MHz	
Electron Mossing Momentum (LDMX)	DarkSector	electron	-3 GeV to -20 GeV	O(1 electron per RF budset at 53 MHz)	OVish:	
Bectron Beam Dumps	Dark Sector	electron	fav GiV	10*(31) electrons on target over the opportment of numbers	Pulsed bears (duty factor not specified)	
Proton tradiation Facility	RND	proton	Energy is not very important	fell proton in a lew hours	Pulserbean (duly factor not specified)	
SEN	Neutrino	proton		22	20 to :	
Milde	CLFV	protorc			<10/(-10) edinction	
Fixed Target Searches for new physics with O(10 GeV) Proton Dicare Dump	Dark Sector, Neutrino	proton		up to 115	Sum spills less than a few microsec with separation between spills greater than 90 microsec	
Muon beam stump	Dark Sector	proton (producing- muons)	3 GeV muons	3e14 muons in total on target for the whole run	ON	
Muon Collider RSD and Neutrino Factory	RMD	proton	5-30GeV	le12 to le13 protore per bunch	10 - 50 Hz repitate and bunch length 1-3 mi	
Muon Missing Momentum	Dark Sector	proton (producing- muors)	New 10s of GeV	10/10 muors per experimental runtime	Pulsed beam (duty factor and specified)	
High Energy Proton Fixed Target	Dark Sector, Neutrino	protei	O(100 GeV)	te12 POT/s therefore -20W/	OV variesment extraction. "If we could up the duty factor that woull dise even better"(7)	
Test-Boom Facility	RMD	proton	CO, lowe energies would also be beneficial	10 to 100 lets on the testing appointus	Pulset bean (duty factor not specified)	
TauNestros	Nating	protes	100	1200 or higher	Mi time structure	

Electron beams:

~ GeV to multi-GeV

Proton beams:

~2 GeV CW-capable beam

~2 GeV pulsed beam from storage ring ~1MW

~8 GeV pulsed beam ~1MW

120 GeV Slow extraction or LBNF beam

Started LESA Beamline for LDMX @ SLAC

Features:

Snowmass 2021

- SLAC electron SRF linac *E*=4-8 GeV
- Low intensity, almost CW beamline, 1-500 e-/us
- Beam dump and LDMX experiment
- CD-process started

Proposed PIP-II Accumulator Ring (PAR)

Features:

- Fixed *E*=0.8-1.0 GeV proton storage ring
- C=480m in the form of a *folded figure 8*
- Power 100 kW for Dark Sector program, 100Hz
- There is also compact version C=120 m

PIP2-BD

Future Collider Proposals: 8 Higgs/EW factories

Name	Details
СерС	e+e-, \sqrt{s} = 0.24 TeV, L= 3.0 ×10 ³⁴
CLIC (Higgs factory)	e+e-, \sqrt{s} = 0.38 TeV, L= 1.5 ×10 ³⁴
ERL ee collider	e+e-, \sqrt{s} = 0.24 TeV, L= 73 ×10 ³⁴
FCC-ee	e+e-, \sqrt{s} = 0.24 TeV, L= 17 ×10 ³⁴
gamma gamma	X-ray FEL-based $\gamma\gamma$ collider
ILC (Higgs factory)	e+e-, \sqrt{s} = 0.25 TeV, L= 1.4 ×10 ³⁴
LHeC	$ep, \sqrt{s} = 1.3 \text{ TeV}, L= 0.1 \times 10^{34}$
MC (Higgs factory)	$\mu\mu, \sqrt{s} = 0.13$ TeV, L= 0.01×10^{34}

17 (1) High Engray Collider Concents/Pron

17	(:) mign	Ellergy	Collider	Concepts/Propt
Name		Details		CLIC e+e-3 TeV, 100 MV/m 50 km

Cryo-Cooled Copper linac

e+e-, \sqrt{s} = 2 TeV, L= 4.5 ×10³⁴

 $ep, \sqrt{s} = 6 \text{ TeV}, L = 4.5 \times 10^{33}$

High Energy CLIC e+e-, \sqrt{s} = 1.5 -3 TeV, L= 5.9 ×10³⁴

High Energy ILC e+e-, $\sqrt{s} = 1 - 3 \text{ TeV}$

FCC-hh pp, $\sqrt{s} = 100 \text{ TeV}$, L= 30×10^{34}

LHeC

CEPC-SPPpC-eh

pp, $\sqrt{s} = 75/150 \text{ TeV}$, L= 10×10^{34} SPPC

pp, $\sqrt{s} = 500 \text{ TeV}$, L= 50×10^{34} Collider-in-Sea

 $ep, \sqrt{s} = 1.3 \text{ TeV}, L= 1 \times 10^{34}$

 $ep, \sqrt{s} = 3.5 \text{ TeV}, L= 1 \times 10^{34}$ FCC-eh

 $ep, \sqrt{s} = 9 \text{ TeV}$ VHE-ep

 $\mu\mu$, $\sqrt{s} = 1.5$ TeV, L= 1 $\times 10^{34}$ MC – Proton Driver 1

 $\mu\mu$, $\sqrt{s} = 3$ TeV, L= 2 × 10³⁴

MC - Proton Driver 2

 $\mu\mu$, $\sqrt{s} = 10 - 14$ TeV, L= 20 $\times 10^{34}$ MC - Proton Driver 3

MC - Positron Driver $\mu\mu$, $\sqrt{s} = 10 - 14$ TeV, L= 20 $\times 10^{34}$

LWFA-LC (e+e- and $\gamma\gamma$) Laser driven; e+e-, $\sqrt{s} = 1 - 30 \text{ TeV}$

PWFA-LC (e+e- and $\gamma\gamma$) Beam driven; e+e-, $\sqrt{s} = 1 - 30 \text{ TeV}$

Structure wakefields; e+e-, $\sqrt{s} = 1 - 30$ **SWF#**(0)22 TeV

pp 100 km : SPPC 75 TeV, 12 T magnets, FCChh 100/16 T

(New!) LC-Higgs Factories on FNAL Site

Must fit ~7 km incl BDS

Requires gradients of at least 72MV/m
Compact → lower cost (wrt ILC/CLIC)

Option 1: Cool Copper Collider (C³)

5.7GHz 77K

Option 1: <u>HELEN</u> (Travelling Wave ILC)

1.3GHz 2 K

07/08/2022 Shiltsev | Snowmas

FNAL Citing – O(10 TeV) Muon Collider

- First design concept of up to 10 TeV collider developed
- Operation at 125 GeV, 1 and 3 TeV can be envisioned as intermediate stages
- Capitalize on existing facilities and expertise:

O PIP-II and upgrades,

Muon Colliders Forum:

- a) aim for 10 TeV cme
- b) DOE support+join IMCC (CERN-led Int'l Muon Collider Collaboration)
- c) Carry out R&D and deliver pre-CDR ca 2030

Implementation Task Force

- The Accelerator Implementation Task Force (ITF) is charged with developing metrics and processes to facilitate a comparison between collider projects.
- 10 int'l experts, 2 Snowmass Young's, 3 liaisons to Energy & Theory Frontiers
- ITF addressed (four subgroups):
 - Physics reach (impact), beam parameters
 - Size, complexity, power, environment
 - Technical risk, technical readiness, validation and R&D required
 - Cost and schedule

Thomas Roser (BNL, Chair)

Philippe Lebrun (CERN)

Steve Gourlay (LBNL)

Tor Raubenheimer (SLAC)

Katsunobu Oide (KEK)

Jim Strait (FNAL)

(FNAL)

Vladimir Shiltsev Reinhard Brinkmann (DESY)

John Seeman (SLAC)

Dmitry Denisov (BNL)

Meenakshi Narain (Brown U.)

Liantao Wang (U.Chicago)

Sarah Cousineau (ORNL)

Marlene Turner (LBNL)

Spencer Gessner (SLAC)

From the ITF Report Draft: Tables 1-3, 5

	CME (TeV)	Lumi per IP (10^34)	Years, pre- project R&D	Years to 1 st physics	Cost range (2021 B\$)	Electric Power (MW)
FCCee-0.24	0.24	8.5	0-2	13-18	12-18	280
ILC-0.25	0.25	2.7	0-2	<12	7-12	140
CLIC-0.38	0.38	2.3	0-2	13-18	7-12	110
HELEN-0.25	0.25	1.4	5-10	13-18	7-12	110
CCC-0.25	0.25	1.3	3-5	13-18	7-12	150
MC-Higgs	0.13	0.01	>10	19-24	4-7	~200
CLIC-3	3	5.9	3-5	19-24	18-30	~550
ILC-3	3	6.1	5-10	19-24	18-30	~400
MC-3	3	2.3	>10	19-24	7-12	~230
MC-FNAL	6-10	20	>10	19-24	12-18	O(300)
MC-10	10-14	20	>10	>25	12-18	O(300)
FCChh-100	100	30	>10	>25	30-50	~560

Future Colliders R&D Program - Initiative

Snowmass 2021

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

June 30, 2022

U.S. National Accelerator R&D Program on Future Colliders

P.C. Bhat^{1,†},S. Belomestnykh^{1,5}, D. Denisov³, S. Gourlay⁶, S. Jindariani¹, A.J. Lankford^{8,†}, S. Nagaitsev^{1,2,†}, E.A. Nanni⁴, M.A. Palmer³, T. Raubenheimer⁴, V. Shiltsev¹, A. Valishev¹, F. Zimmermann⁷

We propose that the U.S. establish a national integrated R&D program on future colliders in the DOE Office of High Energy Physics (OHEP) and charge the program

- to carry-out technology R&D and accelerator design for future collider concepts,
- to enable synergistic engagement in projects proposed abroad (e.g. FCC, ILC, CLIC, IMCC),
- to develop design reports on collider options, by the time of the next Snowmass and P5 (2029–2030), particularly for options that are feasible to be hosted in the U.S.,

07/08/develop R&D plans for the decade beyond 2030 Accelerators

Multi-MW targets:

- 2.4MW PIP-III
- 4-8 MW for muon collider

Magnets for colliders and RCSs:

- 16T dipoles
- 30T solenoids
 - 1000 T/s fast cycling ones coordinate with US MDP

Advanced:

- collider quality beams
- efficient drivers
- close coordination with Int'l(Euro Roadmap, EUPRAXIA,..)

SC/NC RF:

- 72-120 MV/m C³
- 72 MV/m TW SRF
- new materials, high Q_o
- efficient power sources

Thanks for your attention!

- ICHEP'22 presentations on AF/related topics Thursday, July 7:
 - A.Faus-Golfe (AF3) on CLIC and ILC
 - N.Pastrone (AF4) on energy frontier colliders
 - S.Nagaitsev on multi-MW proton beams at FNAL
 - D.Druitti and R.Reimann on the muon g-2 ring
 - V.Pronskykh on the mu2e target
 - S.Nagaitsev on the optical stochastic cooling
 - D.Calzolari on MDI of multi-TeV muon collider
- Later in this session:
 - D.Schulte on the energy frontier muon colliders
 - P.Burrows on ILC and CLIC
- Special thanks to
 - My co-conveners S.Gourlay and T.Raubenheimer
 - T.Roser (ITF chair) and P.Bhat (FNAL collider group leader)
 - Accelerator Frontier Topical Group conveners and liaisons to EF, NF and TF
- In preparation of the *Snowmass in Seattle*, tons of material available at:

