

Report of electron beam acceleration with STF-2 cryomodules for the ILC

MASAKAZU KURATA

КЕК

ON BEHALF OF THE STF-2 COLLABORATION

ICHEP2022, JULY 06-13, 2022

STF-2 Collaboration

Masakazu Kurata, Yasuchika Yamamoto, Eiji Kako, Kensei Umemori, Hiroshi Sakai, Takayuki Saeki, Takeshi Dohmae, Taro Konomi, Mathieu Omet, Ryo Katayama, Hayato Ito, Hayato Araki, Toshihiro Matsumoto, Shinichiro Michizono, Masato Egi, Mitsuo Akemoto, Dai Arakawa, Hiroaki Katagiri, Masato Kawamura, Hiromitsu Nakajima, Hitoshi Hayano, Masafumi Fukuda, Yosuke Honda, Alexander Aryshev, Masao Kuriki, Shinya Aramoto, Zachary Liptak, Kazuyuki Sakaue, Hirotaka Nakai, Yuuji Kojima, Kazufumi Hara, Teruya Honma, Kota Nakanishi, Hirotaka Shimizu, Yoshinari Kondou, Akira Yamamoto, Nobuhiro Kimura, Sakae Araki, Yu Morikawa, Takahiro Oyama, Shinichi Takahara, Mika Masuzawa, Ryuichi Ueki, Yoshihisa Iwashita

Univ. of Tokyo, KEK, Hiroshima Univ., Kyoto Univ.

Introduction

- •STF-2 have been developed to verify the technology of superconducting acceleration, which is the key towards realization of the International Linear Collider (ILC)
- Requirements for STF: Realization of ILC specification
 - High accelerating gradient operation
 - Long pulse, high current beam operation without loss
 - Beam quality: Keeps emittance as designed
- R&Ds have been proceeded to achieve those requirements
- •We report the status of the studies at STF-2

ILC Project

- Higgs factory machine (250 GeV @E_{CM})
- Superconducting cavity/cryomodule technology as mass production
 - ~750 Cryomodules (challenging number, but not impossible!)
- Nano beam technology
- Candidate site: Kitakami in Japan

STF-2 accelerator

- ~70 m superconducting Linac (1.65 msec/5Hz)
- •Superconducting cavities: 14(1.3 GHz, 9-cell)
- •Cryomodules:CCM(2) CM1/CM2a(12)
- •Photo cathode RF gun (Cs2Te、Q.E.~1%)
- •Laser system: 162.5 MHz, 1064 nm, 12 W
- •Klystrons: 3 (5 MW, 800 kW, 10 MW)
- •Beam dumps: 2(Dump2: 37.8 kW)
- •2K Helium cold box: 2
- •Several beam monitors: BPMs, ICTs, profile monitors
- Bending magnets to Dumps: 2

Specification since FY2020

Bend 2

Max. Energy [MeV]	500
Max. Beam Intensity [µA]	3.0
Max. beam power [kW]	1.35

Achievable Accelerating Gradient in CM1/2a in 2021

most of the cavities have same performance in FY2021

- In April 2021, beam operation with 14 cavities was successfully done
- 12 cavities have performance within $\pm 20\%$ of 31.5 MV/m
 - Some cavities have performance degradation due to
 - Abnormal heat load
 - Field emission

Max Average E_{acc} Operation

•In April 2021, beam operation with maximum averaged accelerating gradient using 9 cavities was performed

Averaged accelerating gradient:

	From beam	From RF
Averaged E _{acc} [MV/m]	32.9	33.0

- •There is 5% margin from ILC specification
 - ILC specification: 31.5 MV/m

avity stat	us mon											\odot
avity Monitor	(CM1,CM2	2a)	BE	AM ON LI	NACモード		2021	/04/12 17:45:58				
	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Pf (W):	85.52kW	75.69kW	78.72kW	37.75kW	91.83kW	2.96kW	21.41k	W 79.54kW	94.92kW	74.65kW	61.23kW	75.52
Pf Eacc(MV/m):	37.63	34.19	36.36	20.10	38.77	8.12	29.6	6 35.57	38.59	35.81	34.86	36.3
Pt(W):	11.78W	8.36W	7.38W	504.14uW	10.71W	341.25uW	1.20m	W 11.64W	7.88W	7.48W	8.27W	5.9
Pt Eacc(MV/m):	33.76	32.23	34.40	0.22	34.91	0.18	0.3	9 35.01	35.44	31.96	30.30	28.
E-Pulse(mV):	329.000	244.000	298.000	103.000	219.000	151.000	128.00	0 187.000	882.000	691.000	197.000	-99.0
E-Charge(mV):	103.000	283.000	165.000	107.000	265.000	316.000	207.00	0 188.000	790.000	523.000	-707.000	50.0
Arc(mV):	196.000	191.000	200.000	191.000	200.000	214.000	217.00	0 198.000	134.000	180.000	131.000	171.0
leriumu —		r	Vacuum—				r		Radiat	ion		
flow rate 2K:	54.725 m 3 /	hour	Captu	ire Upstream	2.35E-7 Pa	KLY	Y3 上 Pf	2.18MW		Low	Hig	h
float rate 5K:	-0.125 m 3 /	hour	Capture	Downstream	1.78E-7 Pa	KLY	Y3 下 Pf	2.32MW	Up:	5.320 mSv/	'h 339	. <mark>534</mark> uSv/
Heat Load 2K:	63.846 w		Capture In	put coupler	7.46E-7 Pa	Pt E	Eacc sum	297.78MV/m	Mid:	9.462 mSv/	'h 979.	.485 uSv/
Pressure 2K:	3.01 kPa		Capture Inne	er conductor	4.12E-8 Pa	Pt Ea	acc ave.	24.81MV/m	Down:	23.099 mSv/	'h 935.	. <mark>390</mark> uSv
Pressure 4K:	125.30 kPa		(M1 Upstream	1.41E-7 Pa	Ing	put Volt	2.17V				
Level 4K:	51.21 %		CM1 Ir	put coupler	5.44E-6 Pa				Feedba	CK		
Level 2K:	54.35 *		CM1 Inne	er conductor	2.28E-8 Pa	Pt B	Eacc sum	296.99MV/m		Feedback	ON	
Level CM2a End:	22.90 %		CM2a	Downstream	2.24E-7 Pa	Pt Ea	acc ave.	33.00MV/m		Ref Power	33.32	
emperature-			CM2a Ir	nput coupler	5.44E-6 Pa	cav1	cav2	cav3 cav4	Deem			
4K Pot:	4.65 K		CM2a Inne	er conductor	4.93E-8 Pa	cav5	cav6	cav7 cav8	[Beam—	Momentum	Ener	av
2K Pot:	1.69 к		CM1/	CM2a Vessel	1.01E-3 Pa	curs.	cavo		RH1 ·	0 12 MeV/	c Circi	NaN MeV
80K anchor#1:	132.950 к					cavy	cavio	cavii caviz	BH2	349.24 MeV/	c 345	R. 73 MeV
80K anchor#2:	144.150 к								5112.	545.24 Her/	540	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Middle pulse beam operation without loss

- •At beam operation in April 2021, severe beam loss near Dump2 was a big problem for high current operation
- •Beam loading makes energy spread in the pulsed beam
 - Gradient drop happens in the accelerating cavities
- Beam hits on the beam line due to dispersion
 - Electrons with different energy go through different orbits after bending magnet
- •We would like to do long pulsed beam operation without loss

• Beam loading compensation is indispensable Signal of Cherenkov counter

Plan of STF-2 beam operation

We plan a beam operation with same pulse length as ILC specification

	F.Y.2019	F.Y.2020	F.Y.2021	F.Y.2022	ILC spec.
Item			Middle train	x 7 beam power	
Max. beam energy [MeV]	500	500	500	500	500 GeV
Max. beam intensity [µA]	0.30	3.00	3.00	21.5	21.0
Max. beam power [kW]	0.135	1.350	1.350	9.675	14 MW
Max # of bunch / train	1000	1000	16260	118048	1312
Bunch spacing [nsec]	6.15	6.15	6.15	6.15	554 nsec
Max train length [µsec]	6.15	6.15	100	726.00	726.848 µsec
Max. RF repetition rate [Hz]	5	5	5	5	5 Hz
Bunch charge [pC]	60	600	36.90	35.66	3.21 nC
Bunch current [mA]	9.756	97.561	6.00	5.799	5.8 mA

Comparison between the 2021 plan and middle pulsed beam operation in Dec. 2021

Almost same pulse length as target

parameter	Beam Energy [MeV]	Pulse length [µsec]	Bunch charge [pC/bunch]	Rep. rate [Hz]
Specification	500	100	36.9	5
Achievement	312	98.4	26	5

Beam Loading Compensation

- •To achieve stable flattop accelerating field:
 - Unexpected disturbance: feedback
 - Repetitive disturbance: Feedforward Additional driving power imposed
 - ⇒ compensate gradient drop from beam loading

Middle pulse operation

- •Averaged accelerating gradient
 - Clear Gradient drop can be seen without feedforward
 - Recover accelerating gradient after imposing feedforward

- All the data within the acceptance window without loss
- ⇒ It is considered that we have obtained a powerful finding for long pulsed beam operation

Anomalous emittance growth

•Since 2019, we found emittance varied before/after accelerating cavities

- Measure emittance before/after cryomodules by Q scan
 - Measure beam size changing Q magnetic field
- •Emittance drastically grows: a few times larger than design(O(1) [mm mrad]) ⇒need to find out the source of this growth

Observation inside the cavities

- In November 2021, to verify there is no obstacle as a source of emittance growth, we observed inside the accelerating cavities by eye
- Confirm nothing is there

Status of the studies

- •We checked several candidates of this emittance growth
 - Mainly focus on accelerating cavities
- •In November 2021, we newly installed additional beam profile monitors immediately upstream/downstream cryomodules
 - We can check the accelerating cavity effect on emittance more precisely
 - Can measure the emittance using QF04-PRM04A

Re-estimate the emittance

- •We checked the calculation of emittance
 - Latest changes of components on the beamline were not reflected correctly
- •Re-estimate the emittance
 - Emittance is already increased by the time reaching QF03: larger than design
 - Emittance growth during acceleration by CM1/2a looks small
 - We are planning to investigate upstream components

Summary

•STF-2 aims to verify superconducting acceleration for the ILC

•Beam operation with 14 cavities was successfully done

- •Acceleration gradient of 33 MV/m was achieved
 - 5% margin from ILC specification
- We plan the same long pulse operation as that of the ILC specification(726 μsec). We have carried out 100 μsec pulsed beam operation without loss at STF-2 in 2021.

 Anomalous emittance growth was observed. So far, no candidate of the source was found. However, it seems that the source(s) might be located at upstream components