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�Abstract

One of the very interesting aspects of high energy heavy-ion collisions exper-
iments is a detailed study of the thermodynamical properties of strongly inter-
acting nuclear matter away from the nuclear ground state and many efforts were
focused on searching for possible phase transitions in such collisions. In this in-
vestigation we are going to explore the presence of thermodynamic instabilities
and the realization of a pure hadronic phase transition at finite temperature and
baryon density nuclear matter. The analysis is performed by means of an effec-
tive relativistic mean-field model with the inclusion of hyperons, ∆-isobars, and
the lightest pseudoscalar and vector meson degrees of freedom. The Gibbs con-
ditions on the global conservation of baryon number and zero net strangeness in
symmetric nuclear matter are required. In this context, a phase transition char-
acterized by both mechanical instability (fluctuations on the baryon density) and
by chemical-diffusive instability (fluctuations on the strangeness concentration) in
asymmetric nuclear matter can take place. In analogy with the liquid-gas nuclear
phase transition, hadronic phases with different values of antibaryon-baryon ra-
tios and strangeness content may coexist during the mixed phase. Such a physical
regime could be in principle investigated in the high-energy compressed nuclear
matter experiments where it is possible to create compressed baryonic matter
with a high net baryon density.
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�Introduction

In this contribution, we to study the hadronic equation of state (EOS) at finite
temperature and density by means of a relativistic mean-field model with the
inclusion ∆-isobars, hyperons and the lightest pseudoscalar and vector meson
degrees of freedom and by requiring the Gibbs conditions on the global conser-
vation of baryon number and zero net strangeness.
In Ref. [1], we have studied the presence of thermodynamical instabilities and
a subsequent phase transition from nucleonic matter to resonance-dominated ∆
matter in a warm and dense asymmetric nuclear medium (T ≤ 50 MeV and
ρ0 ≤ ρB ≤ 3ρ0). In this paper we plan to extend such a previous investigation in
regime of high temperature and dense baryon matter by including the hyperon
and ∆-isobar degrees of freedom in an effective relativistic hadronic EOS. By
requiring the Gibbs conditions on the global conservation of baryon number and
zero net strangeness, we are going to show that the presence of the ∆-isobars can
drive to the formation of mechanical and chemical-diffusive instabilities which
imply a pure hadronic phase transition with different strangeness content in the
mixed phase.
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�Hadronic equation of state

The relativistic mean-field model (RMF) is widely successful used for describing
the properties of finite nuclei as well as hot and dense nuclear matter [2-3].
The Lagrangian for the self-interacting octet of baryons (p, n, Λ, Σ+, Σ0, Σ−,
Ξ0, Ξ−) can be written as [2]

Loctet =
∑
k
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where the sum runs over the full octet of baryons,Mk is the vacuum baryon mass
of index k, the quantity t⃗ denotes the isospin operator that acts on the baryon.
In regime of finite values of temperature and density, a state of high density
resonance matter may be formed and the ∆(1232)-isobar degrees of freedom are
expected to play a central role [4-5]. In particular, the formation of resonances
matter contributes essentially to baryon stopping, hadronic flow effects and en-
hanced strangeness. The Lagrangian density concerning the ∆-isobars (∆++,
∆+, ∆0, ∆−) can be expressed as [4,5]

L∆ = ψ∆ ν [iγµ∂
µ − (M∆ − gσ∆σ)− gω∆γµω

µ]ψν∆ , (2)

where ψν∆ is the Rarita-Schwinger spinor for the ∆-isobars (∆++, ∆+, ∆0, ∆−).
Due to the uncertainty on the meson-∆ coupling constants, we limit ourselves
to consider only the coupling with the σ and ω meson fields, more of which are
explored in the literature.
The field equations in a mean field approximation are

(iγµ∂
µ −M ∗

k − gωkγ
0ω − gρkγ

0t3kρ)ψk = 0 , (3)

(iγµ∂
µ −M ∗

∆ − gω∆γ
0ω)ψν∆ = 0 , (4)

m2
σσ + a g3σN σ

2 + b g4σN σ
3 =

∑
i

gσi ρ
S
i , (5)

m2
ωω + c g4ωN ω

3 =
∑
i

gωi ρ
B
i , (6)

m2
ρρ =

∑
i

gρi t3i ρ
B
i , (7)

where the effective mass of the ith baryon is defined as

M ∗
i =Mi − gσiσ . (8)

The ρBi and ρSi are the baryon density and the baryon scalar density, respectively.
They are given by

ρBi = γi

∫
d3k

(2π)3
[ni(k)− ni(k)] , (9)

ρSi = γi

∫
d3k

(2π)3
M ∗

i

E∗
i

[ni(k) + ni(k)] , (10)

where ni(k) and ni(k) are the fermion particle, antiparticle distributions function,
given by

ni(k) =
1

exp(E∗
i (k)− µ∗i )/T + 1

, (11)

ni(k) =
1

exp(E∗
i (k) + µ∗i )/T + 1

. (12)

The effective chemical potentials µ∗i are given in terms of the chemical potentials
µi by means of the following relation

µ∗i = µi − gωi ω − gρi t3i ρ , (13)

where t3i is the third component of the isospin of i-th baryon. The baryon

effective energy is defined as E∗
i (k) =

√
k2 +Mi

∗2.
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�Phase transition and stability conditions

We are dealing with the study of a multi-component system at finite temper-
ature and density with two conserved charges: baryon (B) number and zero net
strangeness (S) number (rS = ρS/ρB = 0). For what concern the electric charge
(Q), we work in symmetric nuclear matter with a fixed value of Z/A = 0.5 and
we do not consider fluctuation in the electric charge fraction, due to the high tem-
perature regime. Therefore, Q results to be separately conserved in each phase
during the phase transition.
The chemical potential of particle of index i can be written as

µi = bi µB + si µS , (14)

where bi and si are, respectively, the baryon and the strangeness quantum num-
bers of i-th hadronic species.
For such a system, the Helmholtz free energy density F can be written as

F (T, ρB, ρS) = −P (T, µB, µS) + µBρB + µSρS , (15)

with

µB =

(
∂F

∂ρB

)
T,ρS

, µS =

(
∂F

∂ρS

)
T,ρB

. (16)

In a system with N different particles, the particle chemical potentials are ex-
pressed as the linear combination of the two independent chemical potentials µB
and µS and, as a consequence,

∑N
i=1 µiρi = µBρB + µSρS.

Assuming the presence of two phases (denoted as I and II , respectively), the
system is stable against the separation in two phases if the free energy of a single
phase is lower than the free energy in all two phases configuration. The phase
coexistence is given by the Gibbs conditions [3]

µIB = µIIB , µIS = µIIS , (17)

P I(T, µB, µS) = P II(T, µB, µS) . (18)

At a given baryon density ρB and at a given zero net strangeness density rS =
ρS/ρB = 0, the chemical potentials µB are µS are univocally determined by the
following equations

ρB = (1− χ) ρIB(T, µB, µS) + χρIIB (T, µB, µS) , (19)

ρS = (1− χ) ρIS(T, µB, µS) + χρIIS (T, µB, µS) , (20)

where ρ
I(II)
B and ρ

I(II)
S are, respectively, the baryon and strangeness densities in

the low density (I) and in the higher density (II) phase and χ is the volume
fraction of the phase II in the mixed phase (0 ≤ χ ≤ 1).

An important feature of this conditions is that, unlike the case of a single
conserved charge, baryon and strangeness densities can be different in the two
phases, although the total ρB and ρS are fixed [3,6].

For such a system in thermal equilibrium, the possible phase transition can be
characterized by mechanical (fluctuations in the baryon density) and chemical
instabilities (fluctuations in the strangeness number). As usual the condition of
the mechanical stability implies

ρB

(
∂P

∂ρB

)
T, ρC

> 0 . (21)

By introducing the notation µi,j = (∂µi/∂ρj)T,P (with i, j = B, S), the chemical
stability for a process at constant P and T can be expressed with the following
conditions [7,8]

ρB µB,B + ρC µS,B = 0 , (22)

ρB µB,S + ρS µS,S = 0 . (23)

Whenever the above stability conditions are not respected, the system becomes
unstable and the phase transition take place. The coexistence line of a system
with one conserved charge becomes in this case a two dimensional surface in
(T, P, rS) space, enclosing the region where mechanical and diffusive instabilities
occur.
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�Results and discussion

By increasing the temperature and the baryon density during the high energy
heavy ion collisions, a multi-particle system may take place and the formation
antiparticles become much more relevant.
In analogy with the liquid-gas case, we are going to investigate the existence of
a possible phase transition in the nuclear medium by studying the presence of
instabilities (mechanical and/or chemical) in the system.
The chemical stability condition is satisfied if (rS = ρS/ρB):

(
∂µS
∂rS

)
T,P

> 0 or



(
∂µB
∂rS

)
T,P

< 0 , if rS > 0 ,

(
∂µB
∂rS

)
T,P

> 0 , if rS < 0 .

(24)
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Fig. 1 - Pressure as a function of the baryon density (in units of the nuclear
saturation density ρ0) at different temperatures. The curves labeled a through
d have decreasing temperatures: T= 150, 140, 130 and 120 MeV, respectively.
In the case b and c, the system is mechanically unstable (dashed lines) and the
Gibbs constructions are also shown.
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Fig. 2 - Phase diagrams for two values of the coupling: xσ∆ = 1 (upper contin-
uous curves) and xσ∆ = 1.2 (lower continuous curves). Dashed and dot-dashed
lines, represent the isentropic trajectories for S/B = 30, 20, 15, 10 (red, blue,
green and light-blue, respectively) for the two coupling constants xσ∆.

Let us observe that the thermodynamic instabilities are already present in
the so-called ”minimal coupling” choice, assuming the ∆-isobars coupling con-
stants equal to the nucleon one (xσ∆ = xω∆ = 1). By increasing xσ∆ and,
consequently, the relevance of the ∆-isobar degrees of freedom in the EOS, we
observe a remarkable reduction of the critical temperature and an increase of
the baryon density range for which the system enters into the thermodynamical
instability region. Furthermore, along each isentropic trajectory, conserved in
a fluid element in the hydrodynamics models, we have in the mixed phase a
reduction of the temperature in a wide range of baryon density. This peculiar
behavior could be phenomenologically relevant in order to identify such a phase
transition in the future compressed baryonic matter experiments [9,10].
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Fig. 3 - Anti-baryon to baryon particle ratio (R = nB/nB) as a function of the
net baryon density for different temperatures. The dots delimit the regions of
mixed phase. The curves relative to T = 120 and 150 MeV correspond to a
stable configuration of the EOS.

The main goal of this work it to show the possible presence of thermodynami-
cal instabilities at high temperature and dense nuclear matter, by requiring the
global conservation of the baryon number and zero net strangeness. Similarly
to the liquid-gas phase transition, mechanical and chemical-diffusive thermody-
namic instabilities can be formed but, in the present regime, the corresponding
phase transition is driven by a different strangeness content in the mixed phase,
instead of a different electric charge fraction.
The introduction of the ∆ isobar degrees of freedom plays a crucial role in the
realization of the unstable conditions, which are sensible to the values of the
meson-∆ coupling constants. We have seen that the thermodynamic instabilities
appear in the EOS in a finite range of couplings compatible with different expe-
rimental constraints. In this situation, a pure hadronic phase transition takes
place, implying a strong enhancement of the anti-baryon to baryon ratios with a
consequent formation of s quarks, mainly in the baryon sector in the low density
phase, and of s quarks, mainly in the meson sector in the high density phase.
This phase transition could have, therefore, similar features and signatures to the
quark-hadron phase transition with a strangeness distillation effect [11,12].
In the last years, many important progresses have been made in the theoretical
modeling of high baryon density nuclear matter with the development of hydro-
dynamic and microscopic transport models. Analysis of collective flows, such as
directed and elliptic flow, which are sensitive to the early stage of the collisions,
can give valuable information about the nuclear EOS [13,14]. In particular, the
study of the variation of the direct flow at forward rapidity region for different en-
ergies beam could reveal a possible phase transition in the high energy heavy-ion
collisions.
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