

- ✓ At $R_T = 0$, $< p_T >$ is similar across collision systems for all topological regions.
- ✓ For large R_T , the $< p_T >$ approaches similar values in all three topological regions for a given system: dominant UE contribution

5. Search for jet modifications in small systems $I_X = dN_{ch}/dp_T|_{jet like signal in X collision}$ X = pp, p-Pb and Pb-Pb collisions

 $dN_{\rm ch}/dp_{\rm T}|_{\rm jet\,like\,signal\,for\,MB\,pp\,\,collision}$

I		· · · · · · · · · · · · · · · · · · ·	n
	ALICE	8 <p<sup>leading<15 GeV/<i>c</i></p<sup>	$\sqrt{s_{_{\rm NN}}} = 5.02 {\rm TeV}$

- ✓ I_X is sensitive to medium effects. The suppression in away side would indicate the presence of jet quenching in Pb–Pb collisions.
- ✓ The trend for most peripheral and central Pb–Pb collisions are compatible with the ALICE I_{AA} results for $\sqrt{s_{NN}} = 2.76$ TeV. [3]

✓ No enhancement(suppression) for toward(away) side of I_X in pp and p–Pb collisions is observed.

6. Summary

- ✓ The *p*_T spectra as a function of *R*_T for the near, away and transverse sides in pp, p–Pb and Pb–Pb collisions will help to constrain MC models.
 ✓ The particle production in p–Pb collisions behaves like pp rather than Pb–Pb. This suggests the MPI effects in both pp and p-Pb collisions [4].
 ✓ In contrast to Pb-Pb collisions, no enhancement(suppression) of *I_X* is seen for toward(away) side in pp and p-Pb collisions.
- ✓ Similar trend of *p*_T spectra for pp and p-Pb collisions in transverse side. The increase of the ratio to *R*_T-integrated is less steep for p–Pb.
 ✓ Results for all topological regions in Pb–Pb collisions are qualitatively consistent.
- ✓ Models describe data qualitatively for all collision systems

References

[1] T. Martin, P. Skands and S. Farrington, Eur. Phys. J. C 76, 299 (2016).
[2] M. Krüger, PoS Vol. 336 (2019) 236.
[3] ALICE, Phys. Rev. Lett. 108 (2012) 092301.
[4] ALICE, Phys. Lett. B 741 (2015) 38.

