

ICHEP 2022

13 07 2022

International Conference on High Energy Physics (Bologna (Italy)

The dark side of ALICE: from antinuclei interactions to dark matter searches in space

Manuel Colocci¹ on behalf of the ALICE Collaboration

¹University and INFN, Bologna manuel.colocci@bo.infn.it

Introduction

- Antinuclei in space (searched by AMS-02, GAPS) may result from:
 - Dark matter annihilation (or decay) and/or segregated antimatter (signal)
 - Interaction of cosmic rays with the interstellar gas (background)
- Yields (for both channels) depend mainly on:
 - Antinuclei formation mechanisms
 - Particle transport in the galaxy (e.g. diffusion, convection)
 - Attenuation due to inelastic scatterings with the interstellar gas

Antinuclei σ_{inel} measurements

- Antinuclei inel. cross section (σ_{inel}) with matter only poorly constrained since the 70s [1]
- Still today, σ_{inel} of antinuclei are mostly taken from some parametrizations based:
 - on a combination of $\sigma_{tot/el}(\bar{p}p)$ with Glauber model (GEANT 4) [2]
 - on a combination of antiproton and antineutron σ_{inel} [3]
- Recently ALICE started to contribute directly to this field by measuring σ_{inel} of \overline{d} , ${}^3\overline{\text{He}}$ and ${}^3\overline{\text{H}}$ [4-5]
- This talk focuses on A=3 results

- [1] S. P. Denisov et al., Nuclear Physics B 31 (1971) 253
- [2] V. Uzhinsky et al., Physics Letters B 705 (2011) 235
- [3] A. A. Moiseev, J. F. Ormes, Astroparticle Physics 6 (1997) 379
- [4] PRL 125 (2020) 162021
- [5] <u>arxiv.org/2202,01549</u>

The ALICE experiment

ALICE, PRC 97 (2018) 024615

 \rightarrow Matter and antimatter nuclei are produced *almost* at the same rate at LHC $N_{\rm A}/N_{\rm p} \sim 3\cdot 10^{-3({\rm A}-1)}~N_{\rm p}$ (in Pb-Pb collisions at midrapidity)

See L. Barioglio talk [Heavy-lons Session]: "Study of the dynamics of the production of light nuclei in small systems with ALICE"

The two observables

(I) Antiparticle-to-particle ratio (raw)

(II) TOF-to-TPC counts (raw)

Both provide consistent results

MC default $\equiv \sigma_{inel}$ fixed to the GEANT 4 parameterisation

1st ever measurement of ³He absorption cross section in matter

Both observables provide comparable results:

Antitriton inelastic cross section

1st ever measurement of t̄ absorption cross section in matter

 $\sigma_{\text{inel}}(\overline{t}\text{-A})$ in good agreement with GEANT 4, but with large uncertainties:

Next slides: impact of the measurement on ³He flux near Earth

³He source: Dark Matter (I)

- Navarro-Frank-White profile for ρ_{DM} [1]
- WIMP candidates → W+W-
- $\langle \sigma v \rangle = 2.6 \cdot 10^{-26} \, \text{cm}^3 \, \text{s}^{-1} \, [2]$
- ³He spectrum from [1] PYTHIA 8 + coalescence afterburner \rightarrow peak at $E_{\rm kin} \sim 0.1$ GeV/A

[1] E. Carlson et al., Phys Rev D 89 (2014) 076005

[2] M. Korsmeier, F. Donato, and N. Fornengo, Phys Rev 97 (2018) 103011

- SOURCE(S) → PROPAGATION → ANNIHILATION
- 2nd ³He source from interactions of cosmic rays with interstellar matter
- pp, p-4He, 4He-p, 4He-4He most relevant
- Production cross section in pp from [1]: EPOS LHC + coalescence afterburner Scaling factor $(A_T A_P)^{11/15}$ for the other collision systems

[1] A. Shukla et al., Phys Rev D 102 (2020) 063004

[2] ALICE, Phys Rev C 97 (2018) 024615

SOURCE(S) →

PROPAGATION

ANNIHILATION

Transport equation can be solved using GALPROP code [1]

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r}$$
Source Function

Propagation: diffusion, convection...

Fragmentation, annihilation

- Propagation parameters (common for all particles)
 are constrained from available cosmic ray measurements [2]
- Propagation from GALPROP down to the boundaries of Solar System
 - → Heliosphere (shielding cosmic rays) needs to be taken into account
 - → Force Field approximation [3] accounts for solar modulation
- [1] https://galprop.stanford.edu/
- [2] M. J. Boschini et al, Astrophys J Suppl 250 (2020) 27
- [3] L. Gleeson, W. Axford, Astrophys J 154 (1968) 1011

³He annihilation

PROPAGATION

SOURCE(S)

- ³He nuclei may interact inelastically with ISM and get "absorbed"
- Proton and helium targets most relevant
- σ_{inel} (³He-p) from GEANT 4 rescaled using ALICE experimental data
- 8% uncertainty from A scaling [1] is valid for all targets

Alternative parametrizations of $\sigma_{inel}(p)$ give similar results (inside the heliosphere)

Uncertainty only on σ_{inel} from ALICE exp. data* *small compared to other unc. in the field

 $^{3}\overline{\text{He}}$ transparency (at low E_{kin}): 25% from CR interactions 50% from typical DM candidates

High transparency of the galaxy to ³He flux

Solar modulated ³He flux

[1] M. Korsmeier, F. Donato, and N. Fornengo, Phys Rev 97 (2018) 103011

Back-up material

P. von Doetinchem, JCAP08 (2020) 035

