New approach to DM searches with mono-photon signature

Jan Kalinowskia, Wojciech Kotlarski ${ }^{\text {b }}$, Krzysztof Mekala ${ }^{\text {a }}$, Aleksander Filip Żarneckia, Kamil Zembaczynski ${ }^{a}$
FACULTYOF
-津PHYSICS
of WARSAW
${ }^{\text {a }}$ Faculty of Physics, University of Warsaw
${ }^{b}$ National Centre for Nuclear Research, Warsaw

XLI International Conference on High Energy Physics
Dark Matter Session
July 7, 2022

Introduction

Dark Matter

Many hints for existence of Dark Matter (DM), but its nature is unknown. Many possible scenarios, wide range of masses and couplings to consider. No direct evidence within the LHC energy reach

\Rightarrow two options:

- new physics mass scales are even larger \Rightarrow energy frontier
- new particles are light, but their couplings to SM are very small \Rightarrow precision frontier

Introduction

Mono-photon signature

The mono-photon signature is considered to be the most general way to look for DM particle production in future $\mathrm{e}^{+} \mathrm{e}^{-}$colliders.

DM can be pair produced in the $\mathrm{e}^{+} \mathrm{e}^{-}$collisions via exchange of a new mediator particle, which couples to both electrons (SM) and DM states

This process can be detected, if additional hard photon radiation from the initial state is observed in the detector...

New approach to DM searches...

Outline

(1) Introduction
(2) Colliders
(3) Simulating mono-photon events
4. Analysis approach
(5) Results
(6) Conclusions

For details: J. Kalinowski et al., Eur. Phys. J. C 80 (2020) 634, arXiv:2004.14486
J. Kalinowski et al., Eur. Phys. J. C 81 (2021) 955, arXiv:2107.11194

Colliders

International Linear Collider

Technical Design (TDR) completed in 2013

- superconducting accelerating cavities
- $250-500 \mathrm{GeV}$ c.m.s. energy (baseline), 1 TeV upgrade possible
- footprint of 31 km
- polarisation for both e^{-}and $\mathrm{e}^{+}(80 \% / 30 \%)$

Colliders

Compact LInear Collider

Drive Beams

Conceptual Design (CDR) presented in 2012

- high gradient, two-beam acceleration scheme
- staged implementation plan with energy from 380 GeV to 3 TeV
- footprint of 11 to 50 km
- e^{-}polarisation (80%)

For details refer to arXiv:1812.07987

Colliders

Running scenarios

Staged construction assumed for both ILC and CLIC.

ILC

Total of $4000 \mathrm{fb}^{-1}$ assumed at 500 GeV (H-20 scenario)

- $2 \times 1600 \mathrm{fb}^{-1}$ for LR and RL beam polarisation combinations
- $2 \times 400 \mathrm{fb}^{-1}$ for RR and LL beam polarisation combinations assuming polarisation of $\pm 80 \%$ for electrons and $\pm 30 \%$ for positrons
arXiv:1903.01629

CLIC

Total of $5000 \mathrm{fb}^{-1}$ assumed at 3 TeV

- $4000 \mathrm{fb}^{-1}$ for negative electron beam polarisation
- $1000 \mathrm{fb}^{-1}$ for positive electron beam polarisation assuming polarisation of $\pm 80 \%$ for electrons
arXiv:1812.06018

Simulating mono-photon events

Simulating mono-photon events in WHIZARD

For proper estimate of the mono-photon signature sensitivity consistent simulation of BSM processes and of the SM backgrounds is crucial.
"Irreducible" background comes from radiative neutrino pair-production

Detector acceptance \& reconstruction efficiency
\Rightarrow significant contribution from radiative Bhabha scattering
WHIZARD provides the ISR structure function option that includes all orders of soft and soft-collinear photons as well as up to the third order in high-energy collinear photons.

However, WHIZARD ISR photons are not ordinary final state photons: they represent all photons radiated in the event from a given lepton line.

Simulating mono-photon events in WHIZARD

ISR structure function cannot account for hard non-collinear photons \Rightarrow all "detectable" photons generated on Matrix Element level

Dedicated procedure developed to avoid double-counting of ISR and ME For details: J. Kalinowski et al., Eur. Phys. J. C 80 (2020) 634, arXiv:2004.14486

Two variables, calculated separately for each emitted photon:

$$
\begin{aligned}
& q_{-}=\sqrt{4 E_{0} E_{\gamma}} \cdot \sin \frac{\theta_{\gamma}}{2} \\
& q_{+}=\sqrt{4 E_{0} E_{\gamma}} \cdot \cos \frac{\theta_{\gamma}}{2}
\end{aligned}
$$

are used to separate the "soft ISR" emission region from the region described by ME calculations.

Detector acceptance $\sqrt{s}=500 \mathrm{GeV}$

Simulating mono-photon events in WHIZARD

Simplified DM model

UFO model covering most popular scenarios of DM pair-production
Possible mediators:

- scalar
- pseudo-scalar
- vector
- pseudo-vector
- V-A coupling
- V+A coupling

Possible DM candidates:

- real or complex scalar
- Majorana or Dirac fermion
- real vector

Simulating mono-photon events in WHIZARD

Tagging efficiency

based on DELPHES simulation

Mono-photons reconstructed only in a fraction of generated signal event

$$
\sigma\left(e^{+} e^{-} \rightarrow \chi \chi \gamma_{\mathrm{tag}}\right)=f_{\text {mono-photon }} \cdot \sigma\left(e^{+} e^{-} \rightarrow \chi \chi(\gamma)\right)
$$

CLIC @ 3 TeV

Emission strongly suppressed for narrow mediator with $M_{Y} \sim \sqrt{s}$

Analysis approach

Analysis approach

Light mediator exchange

DM production via light mediator exchange still not excluded for scenarios with very small mediator couplings to $\mathrm{SM}, \Gamma_{\mathrm{SM}} \ll \Gamma_{\text {tot }}$
"Experimental-like" approach
\Rightarrow focus on cross section limits as a function of mediator mass and width \Rightarrow reduced dependence on the dark sector details

Detector response simulated in the DELPHES framework (fast simulation).

Analysis approach

Background vs. signal distributions

For mono-photon events, two variables fully describe event kinematics \Rightarrow use 2D distribution of $\left(p_{T}^{\gamma}, \eta\right)$ to constrain DM production

Background
Signal

Signal normalised to unpolarised DM pair-production cross section of 1 fb

Analysis approach

Cross section limits for radiative events (with tagged photon)
Vector Mediator $\quad \Gamma / M=0.03 \quad$ with and without systematics

ILC @ 500 GeV

$$
\text { CLIC @ } 3 \text { TeV }
$$

Systematic effects reduced for on-shell production of narrow mediator

Results

Cross section limits for total DM production cross section
Corrected for probability of hard photon tagging!
Combined limits for Vector mediator

ILC @ 500 GeV

CLIC @ 3 TeV

Radiation suppressed for narrow mediator with $M_{Y} \sim \sqrt{s} \Rightarrow$ weaker limits

Results

Coupling limits for mediator coupling to SM fermions

 $\mathcal{O}(1)$ mediator coupling to DM, fixed by mediator widthCombined limits for Vector mediator

$$
\text { ILC @ } 500 \mathrm{GeV}
$$

CLIC @ 3 TeV

Almost uniform sensitivity to mediator coupling $g_{e e} Y$ up to kinematic limit

Results

Mediator studies

Light mediator scenarios can be discovered at future $\mathrm{e}^{+} \mathrm{e}^{-}$colliders already for DM production cross sections of $\mathcal{O}(10 \mathrm{fb})$

Percent level measurement for cross sections of $\mathcal{O}(100 \mathrm{fb})$

Vector mediator at 500 GeV ILC

$\mathrm{M}=300 \mathrm{GeV}, \Gamma=30 \mathrm{GeV}$

Results

Mediator studies

Light mediator scenarios can be discovered at future $\mathrm{e}^{+} \mathrm{e}^{-}$colliders already for DM production cross sections of $\mathcal{O}(10 \mathrm{fb})$

Sub-percent precision for mediator mass determination

Vector mediator at 500 GeV ILC

$\mathrm{M}=300 \mathrm{GeV}, \Gamma=30 \mathrm{GeV}$

Results

Mediator studies

Light mediator scenarios can be discovered at future $\mathrm{e}^{+} \mathrm{e}^{-}$colliders already for DM production cross sections of $\mathcal{O}(10 \mathrm{fb})$

Mediator coupling structure can be identified using beam polarisation
Vector mediator at 500 GeV ILC

$$
M=300 \mathrm{GeV}, \Gamma=30 \mathrm{GeV}
$$

Signal scenario fit to mono-photon energy spectra for four polarisation settings

Conclusions

New approach to DM searches with mono-photon signature

Future $\mathrm{e}^{+} \mathrm{e}^{-}$colliders: complementary option for DM searches.
Mono-photon signature: the most general way to look for DM production EFT sensitivity extending to the $\mathcal{O}(10) \mathrm{TeV}$ mass scales

New framework for mono-photon analysis developed focus on light mediator exchange and very small mediator couplings to SM

- $\mathcal{O}(10 \mathrm{fb})$ limits on the DM pair-production $e^{+} e^{-} \rightarrow \chi \chi(\gamma)$ except for the resonance region $M_{Y} \sim \sqrt{s}$
- $\mathcal{O}\left(10^{-3}-10^{-2}\right)$ limits on the mediator coupling to electrons up to the kinematic limit $M_{Y} \leq \sqrt{s}$
For light mediators limits more stringent than from direct resonance search
If discovered, new mediator can be precisely studied at $\mathrm{e}^{+} \mathrm{e}^{-}$collider Coupling structure determination possible thanks to beam polarisation

Backup slides

Detector Requirements same for ILC and CLIC

- Track momentum resolution: $\sigma_{1 / p}<5 \cdot 10^{-5} \mathrm{GeV}^{-1}$
- Impact parameter resolution: $\sigma_{d}<5 \mu m \oplus 10 \mu m \frac{1 \mathrm{GeV}}{p \sin ^{3 / 2} \Theta}$
- Jet energy resolution: $\sigma_{E} / E=3-4 \%$ (for highest jet energies)
- Hermecity: $\Theta_{\text {min }}=5 \mathrm{mrad}$

Detailed detector concepts for ILC and CLIC:

Backup slides

Analysis cuts

WHIZARD level selection:

- 1, 2 or 3 ME photons
- at least one ME photon with

$$
\begin{array}{r}
p_{T}^{\gamma}>2 \mathrm{GeV} \& 5^{\circ}<\theta^{\gamma}<175^{\circ} \\
\left(\begin{array}{l}
(\mathrm{ILC} 500 \mathrm{GeV})
\end{array}\right. \\
p_{T}^{\gamma}>5 \mathrm{GeV} \& 7^{\circ}<\theta^{\gamma}<173^{\circ} \\
(\mathrm{CLIC} 3 \mathrm{TeV})
\end{array}
$$

DELPHES level selection:

- single photon with
$p_{T}^{\gamma}>3 \mathrm{GeV}$ \& $\left|\eta^{\gamma}\right|<2.8$ (ILC)
$p_{T}^{\gamma}>10 \mathrm{GeV} \&\left|\eta^{\gamma}\right|<2.6$ (CLIC)
- no other activity in the detector other reconstructed objects

Backup slides

Simplified DM model

Dark matter particles, X_{i}, couple to the SM particles via a mediator, Y_{j}.
Each simplified scenario is characterized by one dark matter candidate and one mediator from the set listed below:

	particle	mass	spin	charge	self-conjugate	type
\sum_{0}	$\begin{aligned} & \hline \hline X_{R} \\ & X_{C} \\ & X_{M} \\ & X_{D} \\ & X_{V} \\ & \hline \end{aligned}$	$m_{X_{R}}$ $m_{X_{C}}$ $m_{X_{M}}$ $m_{X_{D}}$ $m_{X_{V}}$	$\begin{aligned} & \hline \hline 0 \\ & 0 \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	yes no yes no yes	real scalar complex scalar Majorana fermion Dirac fermion real vector
$\begin{aligned} & \stackrel{亠}{2} \\ & . \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \hline Y_{R} \\ & Y_{V} \\ & T_{C} \end{aligned}$	$\begin{aligned} & m_{Y_{R}} \\ & m_{Y_{C}} \\ & m_{T_{C}} \end{aligned}$	0	$\begin{aligned} & \hline \hline 0 \\ & 0 \\ & 1 \end{aligned}$	yes yes no	real scalar real vector charged scalar

Backup slides

Validation of the simulation procedure

WHIZARD predictions were compared to the results from the KKMC code for $e^{+} e^{-} \rightarrow \nu \bar{\nu}+\mathrm{N} \gamma$

3 TeV CLIC

\Rightarrow very good agreement observed (both for shape and normalisation)
For more details:
J. Kalinowski et al., Eur. Phys. J. C 80 (2020) 634, arXiv:2004.14486

Backup slides

ISR rejection probability

Fraction of events generated by WHIZARD removed in merging procedure (ISR photons emitted in the phase-space region covered by ME)

CLIC @ 3 TeV

Backup slides

Systematic uncertainties

following ILD study: Phys. Rev. D 101, 075053 (2020), arXiv:2001.03011
Considered sources of uncertainties:

- Integrated luminosity uncertainty of 0.26% uncorrelated between polarisations
- Luminosity spectra shape uncertainty correlated between polarisations
- Uncertainty in neutrino background normalisation of 0.2% (th+exp) correlated between polarisations
- Uncertainty in Bhabha background normalisation of 1\% (th+exp) correlated between polarisations
- Uncertainty on beam polarisation of 0.02-0.08\% (ILC)/0.2\% (CLIC) correlated for runs with same beam polarisation at ILC
\Rightarrow nuisance parameters in the model fit (11 for ILC, 7 for CLIC)

Backup slides

Comparison with ILD study

Effective mass scale limits: $\quad \Lambda^{2}=\frac{M_{Y}^{2}}{\left|g_{e e Y} g_{\chi \chi Y}\right|}$
Limits from fast simulation (points) vs limits from full simulation (lines)

Very good agreement between full simulation and fast simulation results! \Rightarrow reliable extrapolation to low mediator mass domain...

