Minimal Consistent Dark Matter Models(MCDM) for systematic Dark Matter exploration

Alexander Belyaev

Southampton University & Rutherford Appleton Laboratory

DM is very appealing even though we know almost nothing about it!

DM is very appealing even though we know almost nothing about it!

Collaborators & Projects

- U.Blumenschein, A. Freegard, D.Gupta, S.Moretti, AB
- G.Cacciapaglia, D.Locke, A.Pukhov, AB
- I.Ginzburg, D.Locke, A. Freegard, A.Pukhov, AB
- S.Prestel, F.Rojas-Abate, J.Zurita, AB
- G.Cacciapaglia, J.McKay, D. Marin, A.Zerwekh, AB

arXiv:2204.06411 arXiv:2203.03660 arXiv:2112.15090 arXiv:2008.08591 arXiv:1808.10464

How we can explore & decode the nature of Dark Matter?

We need a DM signal first!

But at the moment we can:

understand what kind of DM is already excluded explore and systematise the DM theory space prepare ourselves to discovery and decoding of DM

Alexander Belyaev

Complementarity of DM searches

Important: there is no 100%correlation between signatures above. E.g. the high rate of annihilation does not always guarantee high rate for DD!

Mass range for thermal DM

NEX

Properties

- gauge-invariant
- renormalisable
- anomaly-free
- can also be a building block of a bigger theory (e.g. SUSY)

Properties

- gauge-invariant
- renormalisable
- anomaly-free

Alexander Belyaev

 can also be a building block of a bigger theory (e.g. SUSY)

Classification

 DM is a part of EW multiplet
 at most one mediator multiplet
 very important for consistent exploration of DM theory space

NEXT

Properties

- gauge-invariantrenormalisable
- anomaly-free
- can also be a building block of a bigger theory (e.g. SUSY)

Classification

Alexander Belyaev

- DM is a part of EW multiplet
 at most one mediator multiplet
 very important for consistent
- exploration of DM theory space

NEXT

Spin of Dark Matter of ator	0	1/2	1	
) even mediator) odd mediator	$\widetilde{S}_{Y}^{I}S_{Y'}^{I'}$ $\widetilde{S}_{Y}^{I}\widetilde{S}_{Y'}^{I'}$	$\widetilde{F}_{Y}^{I}S_{0}^{I'}$ $\widetilde{F}_{Y}^{I}\widetilde{S}_{Y'}^{I'} \widetilde{F}_{Y}^{I}\widetilde{S}_{Y'}^{I'c}$	$\widetilde{V}_Y^I S_Y^I$ $\widetilde{V}_Y^I \widetilde{S}_Y^I$	
1/2 even mediator $1/2$ odd mediator	$\widetilde{S}^{I}_{Y}\widetilde{F}^{I'}_{Y'}$ $\widetilde{S}^{I}_{Y}\widetilde{F}^{I'c}_{Y'}$	$\widetilde{F}_Y^I \widetilde{F}_{Y\pm 1/2}^{I\pm 1/2}$	$\widetilde{V}_{Y}^{I}\widetilde{F}_{Y'}^{I'}$ \widetilde{V}	
even mediator odd mediator G.Cacciapaglia. D.	$\widetilde{S}^{I}_{Y}V^{I'}_{0}$ $\widetilde{S}^{I}_{Y}\widetilde{V}^{I'}_{Y'}$ Locke, A.Pukhov, AB 220	$\widetilde{F}_{Y}^{I}V_{0}^{I'}$ $\widetilde{F}_{Y}^{I}\widetilde{V}_{Y'}^{I'} \widetilde{F}_{Y}^{I}\widetilde{V}_{Y'}^{I'c}$ 3.03660	$\widetilde{V}_{Y}^{I}V_{Y}^{I}$ $\widetilde{V}_{Y}^{I}\widetilde{V}_{Y}^{I}$	

Properties

- gauge-invariantrenormalisable
- anomaly-free
- can also be a building block of a bigger theory (e.g. SUSY)

Classification

Alexander Belyaev

- DM is a part of EW multiplet
 at most one mediator multiplet
 very important for consistent
- exploration of DM theory space

NEXT

Spin of Derk				
Matter	0	1/2	1	
of				
itor				
) even mediator	$\widetilde{S}^{I}_{Y}S^{I'}_{Y'}$	$\widetilde{F}_Y^I S_0^{I'}$	$\widetilde{V}_Y^I S_Y^I$	
odd mediator	$\widetilde{S}^{I}_{Y}\widetilde{S}^{I'}_{Y'}$	$\begin{array}{cc} \widetilde{F}_{Y}^{I}\widetilde{S}_{Y'}^{I'} & \widetilde{F}_{Y}^{I}\widetilde{S}_{Y'}^{I'c} \\ \\ \textbf{MSSM!} \end{array}$	$\widetilde{V}_Y^I \widetilde{S}_Y^I$	
1/2 even mediator				
1/2 odd mediator	$\widetilde{S}^{I}_{Y}\widetilde{F}^{I'}_{Y'} \widetilde{S}^{I}_{Y}\widetilde{F}^{I'c}_{Y'}$	$\widetilde{F}_Y^I \widetilde{F}_{Y\pm 1/2}^{I\pm 1/2}$	$\widetilde{V}_Y^I \widetilde{F}_{Y'}^{I'} \widetilde{V}$	
even mediator	$\widetilde{S}^I_Y V_0^{I'}$	$\widetilde{F}^I_Y V_0^{I'}$	$\widetilde{V}_Y^I V_Y^I$	
odd mediator	$\widetilde{S}^{I}_{Y}\widetilde{V}^{I'}_{Y'}$	$\widetilde{F}_{Y}^{I}\widetilde{V}_{Y'}^{I'}$ $\widetilde{F}_{Y}^{I}\widetilde{V}_{Y'}^{I'c}$	$\widetilde{V}_Y^I \widetilde{V}_Y^I$	
G.Cacciapaglia, D.Locke, A.Pukhov, AB 2203.03660				

DM multiplet only

 $\mathcal{L} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m_D\bar{\psi}\psi$

Cirelli, Fornengo, Strumia hep-ph/0512090 (Minimal Dark Matter)

- $\blacksquare \{I,Y\}=\{0,0\}, \{\frac{1}{2},\frac{1}{2}\}, \{1,0\}$
- {0,0} no gauge-interactions invisible to direct detection and collider but over(under) abundant if thermal (non-thermal)
- $Y \neq 0$ (Dirac DM) Is excluded by direct detection or requires additional sector which splits the mass of ψ
- Radiative mass split very important for the phenomenology

Left: maximum value of m_D above which the lightest particle has charge Q = -1 for various values of Y Right: spectrum for a generic multiplet with Y = 1/2, with mD < 570 GeV. The vertical line shows $m_D \sim m_Z/2$, below which the model is excluded by the Z decays

NEX

Y=0 minimal candidates may be discovered or ruled out at next generation of DD experiments. But there is a cancellation in amplitudes and some models could be accessible only at colliders! [Initially noted by Hisano, Ishiwata, Nagata arXiv:1004.4090]

Alexander Belyaev

NEX

The impact of the PDF uncertainties on DM DD

- the uncertainties in the cross section lead to a sizeable uncertainty in the bound on the DM mass ~ several hundred GeV
- For I=1/2 a cancellation may occur for MDM > 450 GeV, hence making a prediction for the direct detection problematic

But the cross section always remains below the reach of LZ, and will likely escape detection.

Sommerfeld effect

NEX

Sommerfeld effect

- non-relativistic effect changing the cross section due to the wave function distorsion by a long range potential
- Conditions:
 - slow incoming particles

$$m_{\chi} \mathrm{v}^2 \quad \lesssim \quad lpha^2 m_{\chi}$$

• long range force $\frac{1}{m_{\phi}} \gtrsim \frac{1}{\alpha m_{\gamma}}$

The Sommerfeld enhancement of the xsec and the respective reduction of the relic density (due to the Higgs exchange) is mild: it is (mainly) defined by the velocity at freeze-out

 $\tilde{F}_0^0 S_0^0 (CP - odd)$

Minimal fermion DM model with pseudo-scalar mediator

new model, has not been explored previously				
Spin of Dark Matter of itor	0	1/2	1	
even mediator	$\widetilde{S}^{I}_{Y}S^{I'}_{Y'}$	$\widetilde{F}^I_Y S_0^{I'}$	$\widetilde{V}_Y^I S_Y^I$	
odd mediator	$\widetilde{S}^{I}_{Y}\widetilde{S}^{I'}_{Y'}$	$\widetilde{F}_Y^I \widetilde{S}_{Y'}^{I'} \widetilde{F}_Y^I \widetilde{S}_{Y'}^{I'c}$	$\widetilde{V}_Y^I \widetilde{S}_Y^I$	
2 even mediator				
1/2 odd mediator	$\widetilde{S}^{I}_{Y}\widetilde{F}^{I'}_{Y'} \widetilde{S}^{I}_{Y}\widetilde{F}^{I'c}_{Y'}$	$\widetilde{F}_{Y}^{I}\widetilde{F}_{Y\pm1/2}^{I\pm1/2}$	$\widetilde{V}_Y^I \widetilde{F}_{Y'}^{I'} \widetilde{V}$	
even mediator	$\widetilde{S}^{I}_{Y}V^{I'}_{0}$	$\widetilde{F}^{I}_{Y}V^{I'}_{0}$	$\widetilde{V}_Y^I V_Y^I$	
odd mediator	$\widetilde{S}^{I}_{Y}\widetilde{V}^{I'}_{Y'}$	$\widetilde{F}_Y^I \widetilde{V}_{Y'}^{I'} \widetilde{F}_Y^I \widetilde{V}_{Y'}^{I'c}$	$\widetilde{V}_Y^I \widetilde{V}_Y^I$	

Alexander Belyaev

 $\tilde{F}_0^0 S_0^0 (CP - odd)$

isospin

Z2 odd

new model, has not been explored previously

two-component DM model (pseudoscalar is accidentally stable)

$\mathbf{x} \neq \mathbf{x}$				
spin hypercharge	Spin of Dark Matter	0	1/2	1
$c \rightarrow i v = 7.5$, λ_{aH+12} , $i = 1$	utor			
$\mathcal{L} \supset iY_{\psi}a\psi\gamma^{\circ}\psi\frac{ a ^{2}\phi_{H}\phi_{H}}{4}$) even mediator	$\widetilde{S}^{I}_{Y}S^{I'}_{Y'}$	$\widetilde{F}_Y^I S_0^{I'}$	$\widetilde{V}_Y^I S_Y^I$
Fermion DM pseudoscalar SM Higgs doublet) odd mediator	$\widetilde{S}_{Y}^{I}\widetilde{S}_{Y'}^{I'}$	$\widetilde{F}_{Y}^{I}\widetilde{S}_{Y'}^{I'}$ $\widetilde{F}_{Y}^{I}\widetilde{S}_{Y'}^{I'c}$	$\widetilde{V}_Y^I \widetilde{S}_Y^{I'}$
• a does not acquire VEV \rightarrow no linear coupling to Higgs	./2 even mediator			
• $m_a < 2m_\psi$ $ ightarrow$ "secluded DM"	2 add mediator	$\widetilde{\mathbf{G}}I \ \widetilde{\mathbf{F}}I' \widetilde{\mathbf{G}}I \ \widetilde{\mathbf{F}}I'c$	$\widetilde{E}I \ \widetilde{E}^{I\pm 1/2}$	$\widetilde{V}^I \widetilde{F}^{I'} \widetilde{V}$
Model implemented in LanHEP, and numerical scan		$S_Y F_{Y'} = S_Y F_{Y'}$	$YYYY\pm 1/2$	$v_Y r_{Y'} v_{\gamma}$
4 relevant parameters:	even mediator	$\widetilde{S}^I_Y V_0^{I'}$	$\widetilde{F}_Y^I V_0^{I'}$	$\widetilde{V}_Y^I V_Y^I$
$m_\psi, Y_\psi, m_a, \lambda_{aH}$	odd mediator	$\widetilde{S}^{I}_{Y}\widetilde{V}^{I'}_{Y'}$	$\widetilde{F}^I_Y \widetilde{V}^{I'}_{Y'} \widetilde{F}^I_Y \widetilde{V}^{I'c}_{Y'}$	$\widetilde{V}_Y^I \widetilde{V}_Y^I$
G.Cacciapaglia, D.Locke, A.Pukhov, AB arXiv: 2203.03660 B.Diaz, P. Escalona,S.Norrero,A. Zerwekh arXiv: 2105.04255				
Alexander Belyaev Net Towards the Consistent	t Dark Matter Exploi	ration		21

Minimal fermion DM model with pseudo-scalar mediator rich phenomenology: relic density, DD, colliders

(co)Annihilation channels

NEX

Minimal fermion DM model with pseudo-scalar mediator rich phenomenology: relic density, DD, colliders

NEXT

Minimal fermion DM model with pseudo-scalar mediator Xenon1T vs LZ exclusion

Alexander Belyaev

NEXT

Minimal fermion DM model with pseudo-scalar mediator Xenon1T vs LZ exclusion

Alexander Belyaev

NEXT

Minimal fermion DM model with pseudo-scalar mediator Xenon1T vs LZ exclusion

NEXT

Minimal fermion DM model with pseudo-scalar mediator rich phenomenology: relic density, DD, invisible H decay @colliders

Alexander Belyaev

NEX

Conclusions and Outlook

- To decode the nature of DM we need a signal first, but at the moment we can systematically explore theory/parameter space and prepare ourselves for DM discovery and identification
- Data → Model link should be explored:

the exploration of all signatures (which we hope to observe soon) within the systematic model space parametrisation is the robust way to decode BSM

MCDM models:

consistent and simple, the entire parameter space can be explored

- Systematic classification: new simple models can be found!
- Probing DM space:
 - DM DD is sensitive to the loop-induced diagrams but does not exclude all models (directional DM DD should be explored for higher sensitivity)
 - sensitivity is highly dependent on mass-split
 - rich phenomenology, complementarity of DM DD, collider signals and relic density

Thank you!

Backup slides

DM candidates: interaction vs mass

Planck mass BH remnants: tiny black holes protected by gravity effects [Chen '04] from decay via Hawking radiation Wimpzillas: very massive non-thermal WIMPs [Kolb,Chung,Riotto'98] Q-balls: topological solitons that occur in QFT [Coleman '86] EW scale WIMPs, protected by parity - LSP, LKP, LTP particles SuperWIMPs: electrically and color neutral DM interacting with much smaller strength (perhaps only gravitationally) Neutrinos: usual neutrinos are too light-HDM, subdominant component only (to be consistent with large scale structures); but heavier gauge singlet neutrinos can be CDM $\frac{\theta_{QCD}}{E} E^{\mu
u} \tilde{F}^{\mu
u}$ Axions: $32pi^{2}$ $heta_{QCD}$ is replaced by a quantum field, the

^{*VQCD*} is replaced by a quantum field, the potential energy allows the field to relax to near zero strength, axion as a consequence

Minimal fermion DM model with pseudo-scalar mediator: rich phenomenology: relic density, DD, colliders

~90GeV caused by channel a) opening

Tools are important to make theory → observables link !

NEX

Long Lived Particles (LLPs)

- LLPs appear in the minimal DM models with DM being the part of the EW multiplet: the radiative mass split of charged and neutral components is of the order of pion mass
- The hypercharge of the multiplet
 - a) should be zero, otherwise the model is excluded by DM DD constraints from Zboson exchange
 - b) or neutral component (DM) of the multiplet should be split by additional (e.g.Yukawa) interactions, which eliminate DM-DM-Z
 - c) multiplet for non-zero hypercharge can not be large – negatively charged component becomes the lightest particle

$$\begin{pmatrix} D^+ \\ D^0 \\ D^- \end{pmatrix} \longrightarrow \Delta M = M_{D^{\pm}} - M_{D^0} \sim m_{\pi}$$

$$M_Q - M_{Q'} \big|_{m_D \gg m_W} \approx \frac{\alpha m_W}{2(1 + c_W)} \left[(Q^2 - {Q'}^2) + \frac{2Y(Q - Q')}{c_W} \right]$$

Cirelli, Fornengo, Strumia 2005 (scalar and femion DM)

$$\Delta M = \frac{5g_W^2(M_W - c_W^2 M)}{32\pi}$$

AB, Cacciapaglia, McKay, Marin, Zerwekh 2018 (vector DM)

$$D^+ o D^0 \pi^+$$
 is the dominant decay, ${\it D}^{\scriptscriptstyle +}$ is LLP

This small mass gap (~ pion mass) provides disappearing track signature

Using DT to probe minimal DM models

We apply our validated analysis to minimal consistent models

- Scalar: Inert two-Higgs doublet model (i2HDM)
- Minimal Fermion Dark Matter model (MFDM)
- Vector: Minimal Vector Triplet Dark Matter model (VTDM)
- Two classes of processes: D⁺D⁻ and D⁺D⁰/D⁻D⁰ production mediated by s-channel Z/y and W⁺/W⁻ respectively

NEXT

The power of DT for DM probe versus mono-jet limits

- New DT limits for DM models with different spin
- The limits are well beyond those from mono-jet signature analysis for τ ~ 1 ns

Models	${\rm Mass}~({\rm GeV})$	tau (ns)
i2HDM	237	0.5
MFDM	436	0.9
VTDM	822	0.7
WINO	587	1.0

■ VTDM → MFDM → i2HDM hierarchy is defined by CS and PT

AB, Prestel, Rojas, Zurita [arXiv 2008.08581]

NEXT

An impressive sensitivity from 36 fb⁻¹ ATLAS results interpretation!

D⁺ (charged partner of DM multiplet) decay

Alexander Belyaev

NEX

The power of DT for DM probe versus mono-jet limits

- New DT limits for DM models with different spin
- The limits are well beyond those from mono-jet signature analysis for τ ~ 1 ns

Models	${\rm Mass}~({\rm GeV})$	tau (ns)
i2HDM	237	0.5
MFDM	436	0.9
VTDM	822	0.7
WINO	587	1.0

■ VTDM \rightarrow MFDM \rightarrow i2HDM hierarchy is defined by CS and PT

AB, Prestel, Rojas, Zurita [arXiv 2008.08581]

NEX

Tools to Study Disappearing Track Signature

The strategy used [arXiv:2008.08581]

- LanHEP→ CalcHEP (LHE) → PYTHIA 8.245 (Latest CKK merging) → Delphes 3.4.1 → analysis code
 - LanHEP/CacIHEP: i2HDM, MFDM, VTDM models with the correct W-pion mixing, models are public at HEPMDB https://hepmdb.soton.ac.uk/ (0820.0330, 0820.0329, 0820.0331)
 - PYTHIA 8.245: improved CKK merging (Stefan Prestel)
 - Delphes 3.4.1: ATLAS card, in particular, to simulate correctly MET from visible ET leptons and jets
 - analysis code (Felipe Rojas): implements ATLAS cuts and efficiency "heatmap" for tracklet ID, evaluates efficiencies and limits for general models
- Validate our code by comparing with ATLAS limits
- Find new limits for generic DM models with spin 0, ½, 1
- Provide publicly the code and efficiency/limits map in (MDM-τ) plane

$$\widetilde{F}_{1/2}^{1/2}\widetilde{M}_0^0$$

Minimal fermion DM model

•	ILC:
	I.Ginzburg, D.Locke, A.
	Freegard, A.Pukhov, AB
	arXiv:2112.15090

 LHC: U.Blumenschein, A. Freegard, D.Gupta, S.Moretti, AB arXiv:2204.06411

-+ Mediat	or		
Spin of Dark Matter of ator	0	1/2	1
even mediator	$\widetilde{S}^{I}_{Y}S^{I'}_{Y'}$	$\widetilde{F}_Y^I S_0^{I'}$	$\widetilde{V}_Y^I S_Y^I$
) odd mediator	$\widetilde{S}^{I}_{Y}\widetilde{S}^{I'}_{Y'}$	$\widetilde{F}_Y^I \widetilde{S}_{Y'}^{I'} \widetilde{F}_Y^I \widetilde{S}_{Y'}^{I'c}$	$\widetilde{V}_Y^I \widetilde{S}_Y^I$
2 even mediator			
./2 odd mediator	$\widetilde{S}_Y^I \widetilde{F}_{Y'}^{I'} \widetilde{S}_Y^I \widetilde{F}_{Y'}^{I'c}$	$\widetilde{F}_Y^I \widetilde{F}_{Y\pm 1/2}^{I\pm 1/2}$	$\widetilde{V}_Y^I \widetilde{F}_{Y'}^{I'} \widetilde{V}$
even mediator	$\widetilde{S}^I_Y V_0^{I'}$	$\widetilde{F}^I_Y V_0^{I'}$	$\widetilde{V}_Y^I V_Y^I$
odd mediator	$\widetilde{S}^{I}_{Y}\widetilde{V}^{I'}_{Y'}$	$\widetilde{F}_Y^I \widetilde{V}_{Y'}^{I'} \widetilde{F}_Y^I \widetilde{V}_{Y'}^{I'c}$	$\widetilde{V}_Y^I \widetilde{V}_Y^I$

Alexander Belyaev

 $\widetilde{F}_{1/2}^{1/2}\widetilde{M}_0^0$ Minimal fermion DM model (MFDM) gives 2/3 -lepton signatures at the LHC

 $[M_{D1}, \Delta M_{D+}, \Delta M_{D3}]$

only three parameters (effectively two for the LHC)

Alexander Belyaev

NEXT

Minimal fermion DM model (MFDM) gives 2/3 -lepton signatures at the LHC

 $[M_{D1}, \Delta M_{D+}, \Delta M_{D3}]$

only three parameters (effectively two for the LHC)

NEXT

Alexander Belyaev

 $\widetilde{F}_{1/2}^{1/2} \widetilde{M}_{0}^{0}$

Towards the Consistent Dark Matter Exploration

Alexander Belyaev

NEXT

Towards the Consistent Dark Matter Exploration

Alexander Belyaev

NEXT

The role of the ILC in decoding the spin of DM e+e- \rightarrow D+ D- \rightarrow DM DM W+ W- \rightarrow DM DM jj $\mu \nu$

The angular W-boson distribution

AB, Ginzburg, Locke, Freegard, Pukhov arXiv:2112.15090

NEX

Alexander Belyaev

Minimal fermion DM model with pseudo-scalar mediator non-thermal ψ

Alexander Belyaev

NEXT

Decoding Problem: Data \rightarrow **Theory link**

probably the most challenging problem to solve: **the inverse problem**

- this is the problem of decoding of the underlying theory from data which requires database of models, database of signatures
- It is based on machine learning of matching signal from data with the pattern of the signal from data

HEPMDB (High Energy Physics Model Database) was created in 2011 hepmdb.soton.ac.uk

- convenient centralized storage environment for HEP models
- it allows to evaluate the LHC predictions and perform event generation using CalcHEP, Madgraph for any model stored in the database
- you can upload there your own model and perform simulation

