

Searching for sub-GeV dark matter with SENSEI

A. M. Botti* for the SENSEI† collaboration **ICHEP 2022**

July 6-13, 2022

Image: SENSEI sensor

^{*} Fermi National Accelerator Laboratory · abotti@fnal.gov

[†] Sub-Electron-Noise Skipper-CCD Experimental Instrument · https://sensei-skipper.github.iowww

The Oensei Collaboration

L. Barak, I. M. Bloch, E. Etzion, A. Orly, T. Volansky

A. M. Botti, G. Cancelo, F. Chierchie³, M. Crisler, A. Drlica-Wagner², J. Estrada, G. Fernandez Moroni², M. Sofo Haro⁴, L. Stefanazzi, S. Uemura, J. Tiffenberg

M. Cababie¹, D. Rodrigues¹

L. Chaplinsky, R. Essig, D. Gift, S. Munagavalasa, A. Singal

T.-T. Yu

I. Lawson, L. Steffon, S. Scorza

¹ Also Fermilab

² Also U. Chicago

³ Also CAB, CNEA-CONICET-IB

Sub-**E**lectron-**N**oise **S**kipper-CCD **E**xperimental **I**nstrument

New generation Charge Couple Devices (CCD) **LBNL** MicroSystems Lab Energy threshold ~ **1.1 eV**(Si bandgap) and readout noise ~ **0.1 e**⁻

Main goals

- · First DM detector with Skipper-CCDs
- · Validate technology for DM and v detection
- · Probe DM masses at the MeV scale (e recoil)
- Probe axion and hidden-photonDM masses > 1 eV (absorption)

Latest results (2020)

Heavy mediator **e**⁻ scattering

Light mediator **e** scattering

Absorption

The Oensei Experiment

	2017	2018	2019	2020	Ongoing
	Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)
se	4000 samples	Ξ			

Tiffenberg, Javier, et al. Physical Review Letters 119.13 (2017): 131802.

First Skipper-CCD prototypes

- Prototype designed at LBNL MSL
- 200 & 250 μm thick, 15 μm pixel size
- Two sizes 4k × 1k (0.5gr) & 1.2k × 0.7k pixels
- Parasitic run, optic coating and Si resistivity ~ $10k\Omega$
- 4 amplifiers per CCD, three different RO stage designs

Instrument:

- · System integration done at Fermilab
- · Custom cold electronics
- · Firmware and image processing software
- · Optimization of operation parameters

Charge-coupled devices (CCD)

Skipper CCD read-out

- 1. **pedestal** integration.
- 2. **signal** integration.
- 3. charge = signal pedestal.
- 4. **Repeat** N times.
- 5. Average all samples.

Then, both high- and low-frequency noise is reduced

Skipper-CCD read-out noise

Skipper-CCDs for dark matter

Light-**DM** mass range:

- . 1-1000 MeV for e recoil
- . 1~1000 eV for absorption
- 0.5~1000 MeV **Nucleus** recoil (Migdal effect)

Sensitivity to **1,2,3 e**-signals needed: **Skippers** can do this!

But only if we understand and control backgrounds...

Expected spectrum from benchmark models (e⁻ recoil)

R. Essig et al, JHEP 05 (2016), 046

Background sources: detector

Exposure independent

· Spurious charge (10⁻² to 10⁻⁵ e⁻/pix/image)

Exposure dependent

- · Dark current (10⁻⁵ e /pix/day at 135 K)
- · Amplifier light (10⁻¹ to 10⁻⁵ e⁻/pix/day)

Single electron rate reduced by optimizing operation parameters

- · Read-out mode: continuous vs expose
- Voltage configuration
- · Amplifier off while exposure

The SENSEI Collaboration. Phys. Rev. Applied 17, 014022 (2022)

Background sources: environment

High-energy:

- · Air shower muons
- · Nuclear decays
- · x/γ-rays

Low-energy:

- · IR photons
- · Halo and transfer inefficiency
- · Compton scattering
- · Charge collection inefficiency

Environmental background is reduced with shielding, and removed from data with quality cuts

The SENSEI Collaboration - Phys. Rev. Lett. 125, 171802 (2020)

Background goal

Latest SENSEI published result: 1.6x10⁻⁴ e-/pix/day

The Oensei Experiment

2017 2018 2019 DM search with Demonstrate DM search with sub-electron proto-SENSEI at proto-SENSEI resolution (0.1 g) at **surface MINOS** (230 m.w.e.) 1cm readout stages

200 um thick 0.1 gram mass

DM search with science grade (~2 g) at MINOS

Production (100g) + commissioning at SNOLAB (6000 m.w.e.)

The SENSEI Collaboration Physical Review Letters 121.6 (2018): 061803.

The SENSEI Collaboration Physical review letters 122.16 (2019): 161801.

The Oensei Experiment

2017	2018	2019	2020	Ongoing
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)

The SENSEI Collaboration Phys. Rev. Lett. 125, 171802 (2020)

New device @ MINOS

- First skipper-CCD optimized for DM detection
- 5.5 Mpix of 15 μm
- 675 µm thick
- Active mass ~ 2 g
- 20 kΩ
- 4 amplifiers
- T ~ 135 K + vacuum

Quality cuts

	N_e Cuts	1			2	3		4		
	1. Charge Diffusion		1.0	0.	228	0.761		0.778		
		Eff.	#Ev	Eff.	#Ev	Eff.	#Ev	Eff.	#Ev	
	2. Readout Noise	1	$> 10^5$	1	58547	1	327	1	155	
	3. Crosstalk	0.99	$> 10^5$		58004	0.99	314	0.99	153	
	4. Serial Register	~ 1	$> 10^5$	~ 1	57250	~ 1	201	~ 1	81	
	5. Low-E Cluster	0.94	42284	0.94	301	0.69	35	0.69	7	
	6. Edge	0.70	25585	0.90	70	0.93	8	0.93	2	
	7. Bleeding Zone	0.60	11317	0.79	36	0.87	7	0.87	2	
Ξ	8. Bad Pixel/Col.	0.98	10711	0.98	24	0.98	2	0.98	0	
L	9. Halo	0.18	1335	0.81	11	~ 1	2	~ 1	0	
	10. Loose Cluster	N	I/A	0.89	5	0.84	0	0.84	0	
	11. Neighbor	~ 1	1329	~ 1	5		N,	/A		
	Total Efficiency	0.	069	0.	105	0.3	341	0.3	349	
	Eff. Efficiency	0.	069	0.	105	0.3	325	0.3	327	
	Eff. Exp. [g-day]	1	.38	2	.09	9.	03	9.	10	
	Observed Events	131	$1.7^{(*)}$		5		O		0	
	90%CL [g-day] ⁻¹	525	$5.2^{(*)}$	4.	449	0.2	255	0.5	253	

Summary: from prototype to science grade

Active mass ~ **0.1 g 0.019 gram-day** exposure
0.14 e- RO noise
(**800** samples)
SEE ~ **1.14 e-/pixel/day**

Active mass ~ 0.1 g 0.069 gram-day exposure 0.14 e- RO noise (800 samples) SEE ~ 0.005 e-/pix/day

Active mass ~ 2 g 19.926 gram-day exposure 0.14 e- RO noise (300 samples) SEE ~ 1.6x10⁻⁴ e-/pix/day

Latest results (2020)

Heavy mediator **e**⁻ scattering

Light mediator **e** scattering

Absorption

Open-data

Data available in SENSEI papers:

- Physical Review Letters 121.6 (2018): 061803.
- Physical review letters 122.16 (2019): 161801.
- Phys. Rev. Lett. 125, 171802 (2020)

Contact us if anything else is needed

N_e Cuts		1	2		3		4	
1. Charge Diffusion		1.0	0.	228	0.7	761	0.778	
	Eff.	#Ev	Eff.	$\#\mathrm{Ev}$	Eff.	#Ev	Eff.	#Ev
2. Readout Noise	1	$> 10^5$	1	58547	1	327	1	155
3. Crosstalk	0.99	$> 10^5$	0.99	58004	0.99	314	0.99	153
4. Serial Register	~ 1	$> 10^5$	~ 1	57250	~ 1	201	~ 1	81
5. Low-E Cluster	0.94	42284	0.94	301	0.69	35	0.69	7
6. Edge	0.70	25585	0.90	70	0.93	8	0.93	2
7. Bleeding Zone	0.60	11317	0.79	36	0.87	7	0.87	2
8. Bad Pixel/Col.	0.98	10711	0.98	24	0.98	2	0.98	0
9. Halo	0.18	1335	0.81	11	~ 1	2	~ 1	0
10. Loose Cluster	N	/A	0.89	5	0.84	0	0.84	0
11. Neighbor	~ 1	1329	~ 1	5		N,	/A	
Total Efficiency	0.	069	0.	105	0.341		0.349	
Eff. Efficiency	0.069		0.105		0.325		0.327	
Eff. Exp. [g-day]	1	.38	2	.09	9.	03	9.10	
Observed Events	131	$1.7^{(*)}$		5	0		0	
90%CL [g-day] ⁻¹	525	$5.2^{(*)}$	4.	449	0.2	255	0.2	253

The Oensei Experiment

2017	2018	2019	2020	Ongoing
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)
				01630.05

SENSEI @ SNOLAB

- Science-grade skipper-CCDs achieved
- Packaging and electronics also achieved
- Phase 1 system @ SNOLAB
- Vessel deployed at SNOLAB (during the pandemic!!!)
- First 10 CCDs deployed

Towards a **100 g** skipper-CCD detector:

- Produce ~ **50** devices
- Packaging at Fermilab
- Testing
- Deliver and deploy at SNOLAB

- → 10000 dru (MINOS standard shield): proto-SENSEI
- → **3000** dru (MINOS extra shield): first science grade skipper
- → 5 (ultimate goal) dru (SNOLAB): SENSEI 100 g

Perspectives: beyond Oensei

Summary

- SENSEI: first dedicated experiment searching for e-DM interactions.
- protoSENSEI at the surface and MINOS produced first physics.
- First scientific grade skipper-CCD achieved.
- Best constraints on DM-e- scattering for light mediator and heavy mediator, up to 10 MeV.
- Best constraints for DM absorption on electrons for mass 5~12.8 eV.

- **Production** of full **100 g** detector fully funded and ongoing.
- Vessel and 10 Skipper-CCDs deployed at SNOLAB during the pandemic and taking data.
- SENSEI experiment will collect almost 2 million times the exposure of the first run in ~ 2-3 years, probing large regions of uncharted territory populated by popular models
- generations of skipper-CCD experiments foreseen for DM searches in the next ~ 7 years

Backup slides

Skipper-CCD read-out noise

Skipper-CCD resolution

(Almost) Empty CCD

Front-illuminated CCD

Skipper-CCD for photo detection

D. Rodrigues et al., NIMA A 1010 165511

Charge per event for 55Fe x-ray source

Compton scattering spectrum in Silicon with 241Am γ -ray source

Latest results

Heavy mediator **e** scattering

Light mediator **e** scattering

Light mediator **Nucleus** scattering

Absorption

Background sources: environment

High-energy:

- · Air shower muons
- · Nuclear decays
- · x/γ-rays

Low-energy:

- · IR photons
- · Halo and transfer inefficiency
- · Compton scattering
- · Charge collection inefficiency

Single electron rate reduced by optimizing operation parameters

- · Read-out mode: continuous vs expose
- · Voltage configuration
- · Amplifier off while not reading

G. Fernandez Moroni, Phys. Rev. Applied 15, 064026 (2021)

Setup @ MINOS

- 230 m.w.e.
- Previous vessel + extra shielding
- T ~ 135 K + vacuum
- LTA board

proto-SENSEI

R&D sensor:

- optimize operation parameters
- develop packaging and shielding
- Characterize background/noise
- first physics results!

New package Commissioned at surface

Underground clean room

Deploy at MINOS + data taking

Proto-SENSEI runs

@ surface:

- Data from May 2017
- Sea level
- 3 mm copper shielding
- 18 images continuous read
- DC 1.14 e-/pixel/day
- 0.019 gram-day total exposure

@ MINOS:

- Data from 2018
- 230 m.w.e.
- Cylindrical vacuum vessel with 2" lead.
- Two readout modes (continuous & periodic)
- Single-electrons events0.1~0.005 events/pix/day
- 0.177 ~ 0.069 gram-day total exposure

Device:

- \cdot 0.9 Mpix of 15 μ m and 200 μ m thick
- · Active mass ~ 0.1 g
- · 10 kΩ
- T ~ 130 K + vacuum
- · 4 amplifiers
- · 0.14 e- RO noise (800 samples)
- \cdot Operated with LTA board

Proto-SENSEI cuts

$N_{e,\min}$	1	2	3	4	5
1. DM within a single pixel	1	0.62	0.48	0.41	0.37
2. Nearest Neighbor	0.8	0.8	0.8	0.8	0.8
3. Noise	0.88	0.88	0.88	0.88	0.88
4. Bleeding	0.95	0.95	0.95	0.95	0.95
Total	0.67	0.41	0.32	0.27	0.24
Number of events	140,302	4,676	131	1	0

N_e	p	eriodi	ic	co	ntinuous		
Cuts	1	2	3	3	4	5	
1. DM in single pixel	1	0.62	0.48	0.48	0.41	0.36	
2. Nearest Neighbour		0.92		0.96			
3. Electronic Noise		1		~1			
4. Edge		0.92		0.88			
5. Bleeding		0.71		0.98			
6. Halo		0.80		0.99			
7. Cross-talk		0.99		~1			
8. Bad columns	0.80			0.94			
Total Efficiency	0.38	0.24	0.18	0.37	0.31	0.28	
Eff. Expo. [g day]	0.069	0.043	0.033	0.085	0.073	0.064	
Number of events	2353	21	0	0	0	0	

Surface run

MINOS run

Proto-SENSEI results

CCD read-out

Charge estimation:

- 1. **pedestal** integration
- 2. **signal** integration
- 3. charge = signal pedestal

CCD read-out noise

Traditional **CCD**: **charge** transferred to sense node and read **once**

Pedestal and **signal** integration reduces **high-frequency** noise.

But not **low frequency**...

Skipper CCD read-out

Multiple sampling of same pixel without corrupting the **charge** packet.

Pixel value = **average** of all samples

Suggested in **1990** by Janesick et al. (doi:10.1117/12.19452)

Skipper CCD read-out

- 1. **pedestal** integration.
- 2. **signal** integration.
- 3. charge = signal pedestal.
- 4. **Repeat** N times.
- 5. **Average** all samples.

Then, the low-frequency noise is reduced

