

Shunsuke Adachi (Kyoto Univ.) for the DOSUE-RR collaboration

Cold dark matter (CDM)

• CDM is one of main components in the universe!

- Still unknown for the mass and interactions with SM particles. *except for gravity
- WIMP has been conventional candidate.
 - No conclusive result yet
- We consider another candidate.

Our target: Light dark photon CDM

1. Ultra low mass

2. Interaction with photon via a kinetic mixing (A small coupling constant χ)

P Arias et al, JCAP06 (2012) 013

ICHEP 2022, Jul. 8, 2022, Bologna (Italy)

WIMP Interact with nucleons

"DP-CDM"

Photon conversion of DP-CDM

D. Horns et al, JCAP04 (2013) 016

Photon conversion of DP-CDM

D. Horns et al, JCAP04 (2013) 016

1. Conversion photons are perpendicularly emitted! (<0.06°)

Photon conversion of DP-CDM

D. Horns et al, JCAP04 (2013) 016

1. Conversion photons are perpendicularly emitted! (<0.06°)

Detection principle

DP-CDM

- Easy to detect the signal photon using a millimeter-wave receiver
- 2. Frequency is specified by the DP mass. 1. $h\nu \sim m_{\rm DP}c^2$

Signal frequency spectrum

Signal is a narrow frequency peak: $\Delta \nu / \nu_0 (= \beta^2) \sim 10^{-6}$ 1.00^{1e-17} ~ 20 kH **DP-CDM** signal simulation @ m_{DP}=80 µeV/c2 0.75 Power [W] $\propto \chi^2$ 0.50 Peak height is small! 0.25 0.00 -50+50+100+200+150+250Frequency [kHz + 20 GHz] $\nu_0 = 20 \text{ GHz}$

 $\Leftrightarrow m_{\rm DP} = 80 \ \mu {\rm eV/c^2}$

Small peak search in a frequency spectrum

Signal frequency spectrum

Signal is a narrow frequency peak: $\Delta \nu / \nu_0 (= \beta^2) \sim 10^{-6}$ 1.00^{1e-17} ~ 20 kH **DP-CDM** signal simulation @ m_{DP}=80 µeV/c2 0.75 Power [W] $\propto \chi^2$ 0.50 Peak height is small! 0.25 0.00 -50+50+200+100+150+250Frequency [kHz + 20 GHz] $\nu_0 = 20 \text{ GHz}$ $\Leftrightarrow m_{\rm DP} = 80 \ \mu eV/c^2$ Peak position \Leftrightarrow CDM mass $m_{\rm DP}$ Peak height \Leftrightarrow Coupling constant χ

Constraints on DP-CDM

Signal power P_{DP}

Signal power $P_{\rm PD}$ is ~ 10^{-19} W @ $\chi = 10^{-10}$.

Need to find a faint signal ! Need a low noise measurement!

ICHEP 2022, Jul. 8, 2022, Bologna (Italy)

12

Experimental setup

Cryogenically cooled optical path, i.e. a long cryostat,

is employed for the thermal noise reduction.

Thermal radiation

Experimental setup

Metal plate

ICHEP 2022, Jul. 8, 2022, Bologna (Italy)

Refrigerator

P_{measure}

Hot & cold calibration

Two blackbody radiation sources

in liquid N₂ (77K) at room temp.(300K)

Radiation power $P_{\rm in}$ [W] = $k_{\rm B}T_{\rm BB}\Delta\nu$

- $T_{\rm BB} = {\rm Blackbody temp.}$ (77K or 300K)
- $\Delta \nu = 300 \text{ Hz}$ (Frequency resolution)

Hot & cold calibration

- Frequency: **18.0–26.5 GHz**
 - Capability of the spectrum analyzer:
 Frequency span of 2.5 MHz for each measurement at each center frequency
- Resolution (RBW): 300 Hz << 20 kHz (signal peak width)

One measurement cycle (~40 min)

- Frequency: **18.0–26.5 GHz**
 - Capability of the spectrum analyzer:
 Frequency span of 2.5 MHz for each measurement at each center frequency
- Resolution (RBW): 300 Hz << 20 kHz (signal peak width)

One measurement cycle (~40 min)

- Frequency: **18.0–26.5 GHz**
 - Capability of the spectrum analyzer:
 Frequency span of 2.5 MHz for each measurement at each center frequency
- Resolution (RBW): 300 Hz << 20 kHz (signal peak width)

One measurement cycle (~40 min)

- Frequency: 18.0-26.5 GHz
 - Capability of the spectrum analyzer:
 Frequency span of 2.5 MHz for each measurement at each center frequency
- Resolution (RBW): 300 Hz << 20 kHz (signal peak width)

One measurement cycle (~40 min)

Date: Nov. 29—Dec. 10 in 2021 \sim 2 weeks

Calculated input power: $P_{in}(\nu)$

•
$$P_{\text{measure}} = G \left(P_{\text{in}} + k_{\text{B}} T_{\text{rx}} \Delta \nu \right)$$

• (G, T_{rx}) from hot & cold calibration

Signal extraction

- Fit to $P_{in}(\nu)$ by the formula: $P_{DP} \times F(\nu; \nu_0) + a\nu + b$
- Three free parameters: *P*_{DP}, *a*, *b*

•
$$\nu_0 \equiv m_{\rm DP} c^2 / h$$
 is unknown.

•
$$\nu_0 \equiv m_{\rm DP} c^2 / h$$
 is unknown.

•
$$\nu_0 \equiv m_{\rm DP} c^2 / h$$
 is unknown.

•
$$\nu_0 \equiv m_{\rm DP} c^2 / h$$
 is unknown.

•
$$u_0 \equiv m_{
m DP} c^2 / h$$
 is unknown.

Fitted results: P_{DP} All range: 18.0–26.5 GHz (4.25×10^6 fittings)

Zero-consistent with precision of $\approx 10^{-19} \, \mathrm{W}$

Global *p*-value under null-signal hypothesis = 68 % (considering look-elsewhere effect)

No significant signal excess was found.

Upper limit on χ by DOSUE-RR arXiv:2205.03679 Frequency ν_0 [GHz] 10⁰ 10^{1} 10² 10^{3} 10^{4} 10^{-8} Coupling constant χ dish antenna) 10^{-9} Solar lifetime SHUKE arge 10^{-10} 10^{-11} The most stringent limit Axion Haloscope in this range 10⁻¹² 10^{0} 10¹ 10² 10⁴ 10³ 10⁵ Dark photon mass $m_{\rm DP}$ [µeV/c²]

ICHEP 2022, Jul. 8, 2022, Bologna (Italy)

23

Summary

- We performed our first search for DP-CDM using the cryogenically cooled system.
- Search range: 18-26.5 GHz (m_{DP}=74-110 μeV/c²)
 - No significant signal excess was found.
 - Set the most stringent constraint to date!

 $\chi < (0.3 - 2.0) \times 10^{-10} @ 95 \%$ C.L.

Backup

dou-sue-é double-R

DOSUE-RR experiment

"Dark-photon Observing System for Un-Explored Radio-Range"

O(GHz)-a few 100 GHz

Same frequency range as in the CMB observation

Dark photon (DP) at metal surface

Constraints on DP-CDM

- Frequency: **18.0–26.5 GHz**
- Resolution (RBW): 300 Hz ≪ 20 kHz
- Frequency span in one measurement:
 <u>2.5 MHz (due to the spectrum analyzer)</u>

One search cycle (~20 min)

DMNet Seminar, 2022/06/30

Conversion from $P_{\rm DP}$ **to** χ

Systematics errors were applied here:

Source	Systematics [%]	
Gain G	4.0	Calibration o
$A_{\rm eff}$	4.2	simulation uncertainties
$ ho_{ m CDM}$	3.9	Theory mod
Frequency binning	0.6	
Alignment of metal	<0.1	
Direction of conversion	<0.1	
Total	7.0	