Thermal WIMPs and the Scale of New Physics

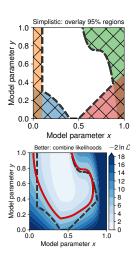
Ankit Beniwal

(On behalf of the GAMBIT Collaboration)

P. Athron et al., Thermal WIMPs and the Scale of New Physics: Global Fits of Dirac Dark Matter Effective Field Theories, EPJC 81 (2021) 11, 992, [arXiv:2106.02056]

Outline

- Global fits
- Dirac fermion DM EFTs
- Constraints and likelihoods
- 4 Results
- Summary


Global fits

Theories with many free parameters/constraints?

Construct a composite likelihood function:

$$\mathcal{L}_{total} = \mathcal{L}_{DD} \times \mathcal{L}_{ID} \times \mathcal{L}_{Collider} \times \mathcal{L}_{Higgs} \times ...$$

- Traditional sampling methods (random, grid) are inefficient.
 S. S. AbdusSalam et al., [arXiv:2012.09874]
- Explore parameter space using advanced sampling techniques (e.g., MCMC, nested sampling).
- Interpret results in frequentist and/or Bayesian statistical frameworks.
- → GAMBIT

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

github.com/GambitBSM

EPJC 77 (2017) 784

arXiv:1705.07908

Extensive model database, beyond SUSY

- Fast definition of new datasets, theories
- Extensive observable/data libraries
- Plug&play scanning/physics/likelihood packages
- Various statistical options (frequentist /Bayesian)
- · Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of: ATLAS, Belle-II, CLIC, CMS, CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON Authors of: BubbleProfiler, Capt'n General, Contur, DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, EasyScanHEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, WIMPSim

Recent collaborators: P Athron, C Balázs, A Beniwal, S Bloor, T Bringmann, A Buckley, J-E Camargo-Molina, C Chang, M Chraszcz, J Conroad, J Cornell, M Danninger, J Edsjö, T Emken, A Fowlie, T Gonzalo, W Handley, J Harz, S Hoof, F Kahlhoefer, A Kvellestad, P Jackson, D Jacob, C Lin, N Mahmoudi, G Martinez, MT Prim, A Rakley, C Rogan, R Ruiz, P Scott, N Serra, P Stöcker, W. Su, A Vincent, C Wenieer. M White, Y Zhang, ++

70+ participants in many experiments and numerous major theory codes

• A Dirac fermion WIMP DM (χ) interacting with SM quarks or gluons via

$$\mathcal{L}_{\text{int}} = \sum_{a,d} \frac{\mathcal{C}_a^{(d)}}{\Lambda^{d-4}} \mathcal{Q}_a^{(d)}, \qquad (1)$$

where $C_n^{(d)} = \text{dimensionless Wilson coefficients, } \Lambda$ = scale of new physics. $d \le 7$ and $\mathcal{Q}_{a}^{(d)} =$ DM-SM operators.

Full Lagrangian is

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{int} + \overline{\chi}(i\partial \!\!\!/ - m_{\chi})\chi. \tag{2}$$

• Free model parameters:

$$6 (d = 6), \quad 16 (d = 6 \& 7).$$

$$\begin{split} &Q_{1,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}q)\,,\\ &Q_{2,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}q)\,,\\ &Q_{3,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)\,,\\ &Q_{4,g}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)\,. \end{split}$$

Dimension-6 operators

$$\begin{aligned} & \mathcal{Q}_{1}^{(7)} = \frac{\alpha_{s}}{12\pi} (\overline{\chi} \chi) G^{a\mu\nu} G^{a}_{\mu\nu} \,, \\ & \mathcal{Q}_{2}^{(7)} = \frac{\alpha_{s}}{6\pi} (\overline{\chi} i \gamma_{5} \chi) G^{a\mu\nu} G^{a}_{\mu\nu} \,, \\ & \mathcal{Q}_{3}^{(7)} = \frac{\alpha_{s}}{8\pi} (\overline{\chi} \chi) G^{a\mu\nu} \tilde{G}^{a}_{\mu\nu} \,, \\ & \mathcal{Q}_{4}^{(7)} = \frac{\alpha_{s}}{8\pi} (\overline{\chi} i \gamma_{5} \chi) G^{a\mu\nu} \tilde{G}^{a}_{\mu\nu} \,, \\ & \mathcal{Q}_{5,o}^{(7)} = m_{q} (\overline{\chi} i \gamma_{5} \chi) (\overline{q} q) \,, \end{aligned}$$

$$Q_{5,q}^{(7)} = m_q(\chi \chi)(qq)$$
,
 $Q_{6,q}^{(7)} = m_q(\overline{\chi}i\gamma_5\chi)(\overline{q}q)$,

$$Q_{6,q}^{(7)} = m_q(\chi i \gamma_5 \chi)(qq),$$

 $Q_{7,q}^{(7)} = m_q(\overline{\chi}\chi)(\overline{q}i\gamma_5 q),$

$$Q_{7,q}^{(7)} = m_q(\chi\chi)(qi\gamma_5q),$$

$$Q_{8,q}^{(7)} = m_q(\overline{\chi}i\gamma_5\chi)(\overline{q}i\gamma_5q),$$

$$\mathcal{Q}_{9,q}^{(7)} = m_q (\overline{\chi} \sigma^{\mu\nu} \chi) (\overline{q} \sigma_{\mu\nu} q) \,, \label{eq:Q9q}$$

$$Q_{10,q}^{(7)} = m_q(\overline{\chi}i\sigma^{\mu\nu}\gamma_5\chi)(\overline{q}\sigma_{\mu\nu}q).$$

Dimension-7 operators

Constraints and likelihoods

Mixing and threshold corrections:

- For direct detection, $C_a^{(d)}$'s required at energy scale $\mu=2\,\mathrm{GeV}$;
- Running/mixing of operators handled by DirectDM v2.2.0.

F. Bishara et al., [arXiv:1708.02678]; J. Brod et al., JHEP, [arXiv:1710.10218]

ullet Threshold corrections when μ is below/above a quark mass, e.g., m_t .

• EFT validity:

- $\Lambda \gtrsim 2 \text{ GeV (direct detection)};$
- ② $\Lambda > 2m_\chi$ (relic density and indirect detection);
- **3** $E_T < \Lambda$ (collider searches). Modify $E_T = \Lambda$:

$$\frac{d\sigma}{d\cancel{E}_T} \to \begin{cases}
0, & \text{hard cut-off,} \\
\frac{d\sigma}{d\cancel{E}_T} \left(\frac{\cancel{E}_T}{\Lambda}\right)^{-a}, & \text{smooth cut-off.}
\end{cases} \tag{3}$$

Here $a \in [0, 4]$ = nuisance parameter.

- Perturbative couplings: $|\mathcal{C}_a^{(d)}| < 4\pi$.
- Parameter ranges: $m_{\chi} \in [5, 500] \, \text{GeV}$ and $\Lambda \in [20, 2000] \, \text{GeV}$.

Constraints and likelihoods

- Direct detection (DirectDMv2.2.0 + DDCalcv2.2.0); XENON1T; LUX (2016); PandaX (2016) and (2017); CDMSlite; CRESST-II and CRESST-III; PICO-60 (2017) and (2019); DarkSide-50
 - F. Bishara et al., [arXiv:1708.02678]; J. Brod et al., JHEP, [arXiv:1710.10218]; P. Athron et al., EPJC, [arXiv:1808.10465]
- Relic density (CalcHEP v3.6.27, GUM + DarkSUSY v6.2.2);

```
A. Belyaev et al., CPC., [arXiv:1207.6082]; S. Bloor et al., [arXiv:2107.00030]
T. Bringmann et al., JCAP, [arXiv:1802.03399]
```

- Fermi-LAT via gamma rays (gamLike v1.0.1);
 - T. Bringmann et al., EPJC, [arXiv:1705.07920]
- Solar capture (Capt'n General) and CMB bounds (CosmoBit);

```
N. Avis Kozar et al., arXiv:[2105.06810]; J. J. Renk et al., JCAP, [arXiv:2009.03286]
```

ATLAS and CMS monojet searches (ColliderBit, FeynRules v2.0, MadGraph_aMC@NLO v2.6.6, Pythia v8.1 + Delphes v3.4.2);

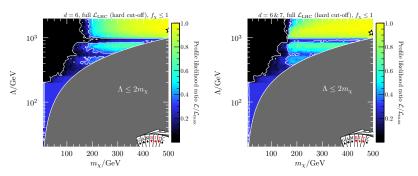
```
G. Aad et al., [arXiv:2102.10874]; A. M. Sirunyan et al., PRD, [arXiv:1712.02345]
C. Balazs et al., EPJC, [arXiv:1705.07919]; A. Alloul et al., CPC, [arXiv:1310.1921]
J. Alwall et al., JHEP, [arXiv:1106.0522]; T. Sjostrand et al., CPC, [arXiv:0710.3820]
J. de Favereau et al., JHEP, [arXiv:1307.6346]
```

8 nuisance parameters.

Top-quark running mass, nuclear form factors, and astrophysical distribution of DM.

Capped $\mathcal{L}_{\mathrm{LHC}}$ likelihood (hard cut-off), $f_{\chi} \equiv (\Omega_{\chi} + \Omega_{\overline{\chi}})/0.12 \leq 1$

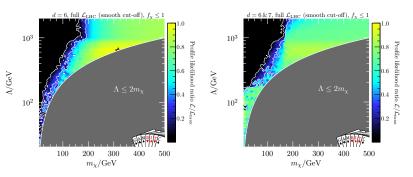
Left panel: d = 6; **Right panel**: d = 6 & 7; **White star** = best-fit point.


- Small m_{γ} and large Λ : strong constraints from LHC; impossible to satisfy relic density requirement. LHC constraints absent for $\Lambda < 200 \, \text{GeV}$.
- Slight upward fluctuation in *Fermi*-LAT data fitted by (for d = 6 case):

$$m_{\chi} = 5.0 \,\text{GeV}, \quad f_{\chi}^2 \langle \sigma v \rangle_0 = 1.1 \times 10^{-27} \,\text{cm}^3 \,\text{s}^{-1}.$$

Full $\mathcal{L}_{\mathrm{LHC}}$ likelihood (hard cut-off), $f_\chi \leq 1$

• For d=6, excesses seen in few high- E_T bins in the ATLAS & CMS monojet searches. Preferred values for Λ at 1σ level:


$$\Lambda \approx 700 \text{ GeV (CMS)}, \quad \Lambda \gtrsim 1 \text{ TeV (ATLAS)}.$$
 (5)

• Similar results for d = 6 & 7 (right panel).

Full $\mathcal{L}_{\mathrm{LHC}}$ likelihood (smooth cut-off), $f_\chi \leq 1$

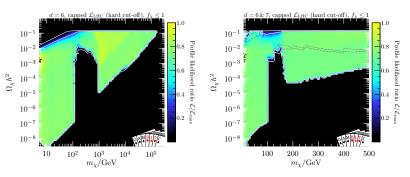
- For d=6, best-fit improves fit to both excesses (Fermi-LAT and LHC) simultaneously than in hard cut-off case (similar for d=6~&~7).
- ullet Requires $\Lambda \sim 80\,\mathrm{GeV}$ and soft cut-off a pprox 1.7 in the E_T spectrum.

Summary

- ① First global analysis of full set of effective operators up to d=7 involving a Dirac fermion DM and quarks or gluons;
- $\ \,$ Novel approach to address issue of EFT validity at the LHC using a cut-off parameter for $\rlap/E_T>\Lambda.$
- **1** Highly efficient likelihood calculations + sampling algorithms to scan over 24 parameters (m_χ , Λ , 14 Wilson coefficients and 8 nuisance parameters).
- ① Strong constraints on small m_χ and large $\Lambda \to {\rm slight}$ preference for DM signal at relatively small $\Lambda.$
- ① Large hierarchy not possible between m_χ and Λ without violating the relic density constraint \to LHC constraints require $\Lambda \lesssim 200\,{\rm GeV}$ for $m_\chi \lesssim 100\,{\rm GeV}$.
- **1** Large regions of parameter space remains viable for $f_\chi \lesssim 1$.

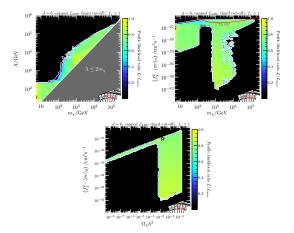
All results, samples and input files are publicly available via Zenodo:

https://zenodo.org/record/4836397



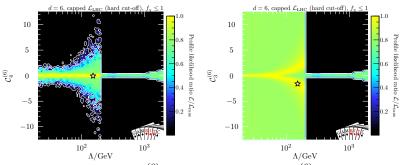
Backup slides

Capped $\mathcal{L}_{\mathrm{LHC}}$ likelihood (hard cut-off), $f_\chi \leq 1$



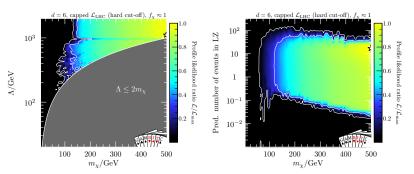
- For d=6 and $m_\chi \lesssim 100\,{\rm GeV}$, impossible to obtain $\Omega_\chi h^2=0.12$ with combined indirect and direct detection constraints.
- In d=6 & 7, now possible to saturate relic density bound for small m_χ (and small Λ) thanks to suppressed signals from $\mathcal{Q}_{3,q}^{(7)}$ and $\mathcal{Q}_{7,q}^{(7)}$.

Capped $\mathcal{L}_{\mathrm{LHC}}$ likelihood (hard cut-off), $f_\chi \leq 1$

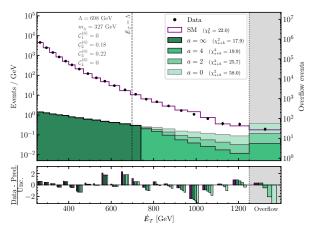

Left panel: (m_χ, Λ) plane. Right panel: $(m_\chi, f_\chi^2 \langle \sigma v \rangle_0)$ plane.

Bottom panel: $(\Omega_\chi h^2,\,f_\chi^2 \langle \sigma v \rangle_0)$ plane.

Capped $\mathcal{L}_{\mathrm{LHC}}$ likelihood (hard cut-off), $f_\chi \leq 1$



Left panel: $(m_\chi,\,\mathcal{C}_4^{(6)})$ plane. Right panel: $(m_\chi,\,\mathcal{C}_3^{(6)})$ plane.


Capped $\mathcal{L}_{\mathrm{LHC}}$ likelihood (hard cut-off), $f_\chi pprox 1$

- Impossible to obtain $\Omega_\chi h^2 = 0.12$ for $m_\chi \lesssim 100\,{\rm GeV}$; relic density requirement incompatible with Fermi-LAT and CMB bounds.
- Up to 10 events predicted \sim best-fit point in next-generation DD experiment LZ \rightarrow require a non-zero $\mathcal{Q}_2^{(6)}$ with spin-independent (momentum-suppressed) interaction.

Top panel: Examples of missing transverse energy (\rlap/E_T) spectrum for the CMS monojet search. **Bottom panel**: Pull $(\equiv (\text{data - predicted})/\text{uncertainty})$ per bin.

GAMBIT modules

① DarkBit	EPJC, [arXiv:1705.07920]
Relic density, indirect and direct detection.	

SpecBit, DecayBit and PrecisionBit EPJC, [arXiv:1705.07936] Spectrum calculation, decay widths and precision observables.

FlavBit EPJC, [arXiv:1705.07933] Flavour physics, observables and likelihoods.

ColliderBit EPJC, [arXiv:1705.07919]
 Collider observables and likelihoods

ScannerBit EPJC, [arXiv:1705.07959] Module for scanners and printers

NeutrinoBit EPJC, [arXiv:1908.02302]
 Neutrino observables and likelihoods

CosmoBit JCAP, [arXiv:2009.03286] Cosmological observables and likelihoods.

Mixing and threshold corrections (DirectDM v2.2.0)

 \bullet Threshold corrections when energy scale $\mu < m_q \rightarrow$ reduced degrees of freedom:

$$\mathcal{C}_{i,q}^{(7)} = \mathcal{C}_{i,q}^{(7)} - \mathcal{C}_{i+4,q}^{(7)} \, (i=1,\,2), \quad \mathcal{C}_{j,q}^{(7)} = \mathcal{C}_{j,q}^{(7)} + \mathcal{C}_{j+4,q}^{(7)} \, (j=3,\,4). \tag{6}$$

• Tensor operators $\mathcal{Q}_{9,q}^{(7)}$ and $\mathcal{Q}_{10,q}^{(7)}$ mix above EW scale \implies dim-5 dipole operators:

$$Q_1^{(5)} = \frac{e}{8\pi^2} (\overline{\chi} \sigma_{\mu\nu} \chi) F^{\mu\nu} , \quad Q_2^{(5)} = \frac{e}{8\pi^2} (\overline{\chi} i \sigma_{\mu\nu} \gamma_5 \chi) F^{\mu\nu} .$$
 (7)

• For $\Lambda > m_t$, $\mathcal{Q}_{9,10,t}^{(7)}$ gives a contribution to $\mathcal{Q}_{1,2}^{(5)}$ at one-loop level:

$$C_{1,2}^{(5)}(m_Z) = \frac{4m_t^2}{\Lambda^2} \log\left(\frac{m_Z^2}{\Lambda^2}\right) C_{9,10;t}^{(7)}(\Lambda).$$
 (8)

 \bullet Axial-vector top-quark current $\mathcal{Q}^{(6)}_{3,t}$ mixes into operators $\mathcal{Q}^{(6)}_{1,q}$:

$$C_{1,u/d}^{(6)}(m_Z) = C_{1,u/d}^{(6)}(\Lambda) + \frac{2s_w^2 \mp (3 - 6s_w^2)}{8\pi^2} \frac{m_t^2}{v^2} \log\left(\frac{m_Z^2}{\Lambda^2}\right) C_{3,t}^{(6)}(\Lambda).$$

ATLAS & CMS monojet searches

- ullet Collider process: $pp o \chi \chi j$ with missing transverse energy E_T .
- CMS and ATLAS monojet searches based on 36 fb⁻¹ and 139 fb⁻¹ of Run II data, respectively.
 G. Aad et al., [arXiv:2102.10874]; A. M. Sirunyan et al., PRD, [arXiv:1712.02345]
- ullet Expected number of events in a given bin of E_T distribution:

$$N = L \times \sigma \times (\epsilon A). \tag{9}$$

- ullet Produce separate interpolations of σ and (ϵA) based on output of MadGraph_aMC@NLO, interfaced to Pythia.
- Matching between MadGraph and Pythia performed according to CKKW prescription, and detector response simulation using Delphes.
- Only $\mathcal{C}_i^{(6)}$ and $\mathcal{C}_{i=1,\dots,4}^{(7)}$ relevant for collider searches. Others suppressed by either PDFs (for heavy quarks) or mass term (for light quarks).
- Separate grids generated for operators that *do not* interfere. For d=6, interference occurs between $\mathcal{Q}_{1,q}^{(6)}/\mathcal{Q}_{4,q}^{(6)}$ and $\mathcal{Q}_{2,q}^{(6)}/\mathcal{Q}_{3,q}^{(6)} \to$ parametrise tabulated grids by mixing angle θ as $\mathcal{C}_{1,2}^{(6)}=\sin\theta$ and $\mathcal{C}_{3,4}^{(6)}=\cos\theta$.

ATLAS & CMS monojet searches

- 22 and 13 exclusive signal regions in CMS and ATLAS monojet analyses, respectively.
- For CMS analysis, combine all signals using publicly available information. For ATLAS, only a single signal region used at once \rightarrow maximise sensitivity by combining 3 highest \rlap/E_T bins.
- For CMS analysis, we have

$$\mathcal{L}_{\text{CMS}}(\boldsymbol{s}, \boldsymbol{\gamma}) = \prod_{i=1}^{22} \left[\frac{(s_i + b_i + \gamma_i)^{n_i} e^{-(s_i + b_i + \gamma_i)}}{n_i!} \right] \frac{1}{\sqrt{\det 2\pi \Sigma}} e^{-\frac{1}{2} \boldsymbol{\gamma}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\gamma}} .$$

- Define profiled CMS likelihood ($\mathcal{L}_{\text{CMS}}(s) \equiv \mathcal{L}_{\text{CMS}}(s, \hat{\hat{\gamma}})$) by profiling over 22 nuisance parameters in γ .
- For ATLAS analysis, $\mathcal{L}_{\mathsf{ATLAS}}(s_i) \equiv \mathcal{L}_{\mathsf{ATLAS}}(s_i, \hat{\hat{\gamma}}_i)$, where $i = \mathsf{signal}$ region with best expected sensitivity (one with lowest likelihood when $n_i = b_i$).
- Total LHC likelihood: $\ln \mathcal{L}_{LHC} = \ln \mathcal{L}_{CMS} + \ln \mathcal{L}_{ATLAS}$.

$$\Delta \ln \mathcal{L}_{LHC} = \ln \mathcal{L}_{LHC}(s) - \ln \mathcal{L}_{LHC}(s = 0), \qquad (10)$$

$$\Delta \ln \mathcal{L}_{\mathsf{LHC}}^{\mathsf{cap}}(s) = \min \left[\Delta \ln \mathcal{L}_{\mathsf{LHC}}(s), \Delta \ln \mathcal{L}_{\mathsf{LHC}}(s = 0) \right]. \tag{11}$$

Nuisance parameters

Nuisance parameter		Value $(\pm 3\sigma range)$
Local DM density	$ ho_0$	$0.2 0.8 \mathrm{GeV} \mathrm{cm}^{-3}$
Most probable speed	$v_{ m peak}$	$240(24)\mathrm{km\ s^{-1}}$
Galactic escape speed	$v_{ m esc}$	$528 (75) \mathrm{km \ s}^{-1}$
Running top mass (MS scheme)	$m_t(m_t)$	162.9 (6.0) GeV
Pion-nucleon sigma term	$\sigma_{\pi N}$	50 (45) MeV
Strange quark contrib. to nucleon spin	Δs	-0.035(0.027)
Strange quark nuclear tensor charge	g_T^s	-0.027(0.048)
Strange quark charge radius of the proton	r_s^2	$-0.115 (0.105) \text{ GeV}^{-2}$

 $\textbf{Table 1:} \ \, \textbf{List of nuisance parameters that are varied simultaneously with the DM EFT model parameters.}$

Type of interactions

	SI scattering	SD scattering	Annihilations
Dimension-6 operators			
$Q_{1,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}q)$	unsuppressed	_	s-wave
$Q_{2,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}q)$	suppressed	_	$p ext{-wave}$
$Q_{3,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)$	suppressed		s-wave
$Q_{4,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)$	 unsuppressed 		$s\text{-wave} \propto m_q^2/m_\chi^2$
Dimension-7 operators			
$Q_1^{(7)} = \frac{\alpha_s}{12\pi} (\overline{\chi}\chi) G^{a\mu\nu} G^a_{\mu\nu}$	unsuppressed	_	$p ext{-wave}$
$Q_2^{(7)} = \frac{\alpha_s}{12\pi} (\overline{\chi} i \gamma_5 \chi) G^{a\mu\nu} G^a_{\mu\nu}$	suppressed	_	s-wave
$Q_3^{(7)} = \frac{\alpha_s}{8\pi} (\overline{\chi}\chi) G^{a\mu\nu} \widetilde{G}_{\mu\nu}^a$	_	suppressed	$p ext{-wave}$
$Q_4^{(7)} = \frac{\alpha_s}{8\pi} (\overline{\chi} i \gamma_5 \chi) G^{a\mu\nu} \widetilde{G}_{\mu\nu}^a$	_	suppressed	s-wave
$Q_{5,q}^{(7)} = m_q(\overline{\chi}\chi)(\overline{q}q)$	unsuppressed	_	$p\text{-wave} \propto m_q^2/m_\chi^2$
$Q_{6,q}^{(7)} = m_q(\overline{\chi}i\gamma_5\chi)(\overline{q}q)$	suppressed	_	s-wave $\propto m_q^2/m_\chi^2$
$Q_{7,q}^{(7)} = m_q(\overline{\chi}\chi)(\overline{q}i\gamma_5q)$	_	suppressed	$p\text{-wave} \propto m_q^2/m_\chi^2$
$Q_{8,q}^{(7)} = m_q(\overline{\chi}i\gamma_5\chi)(\overline{q}i\gamma_5q)$	_	suppressed	s-wave $\propto m_q^2/m_\chi^2$
$Q_{9,q}^{(7)} = m_q(\overline{\chi}\sigma^{\mu\nu}\chi)(\overline{q}\sigma_{\mu\nu}q)$	loop-induced	unsuppressed	$s\text{-wave} \propto m_q^2/m_\chi^2$
$\mathcal{Q}_{10,q}^{(7)} = m_q(\overline{\chi} i \sigma^{\mu\nu} \gamma_5 \chi)(\overline{q} \sigma_{\mu\nu} q)$	loop-induced	suppressed	s-wave $\propto m_q^2/m_\chi^2$

Table 2: Full list of dimension-6 and 7 operators included in our study, and the types of interactions they induce. Here SI (SD) = spin-independent (spin-dependent) DM-nucleon interaction.

Best-fit points

LHC likelihood	Relic density constraint	$2\Delta \ln \mathcal{L}$	Best-fit m_{χ} (GeV)	$\begin{array}{c} \text{Best-fit } \Lambda \\ \text{(GeV)} \end{array}$	Best-fit constrained coupling combination(s) (TeV^{-2})
Capped	Upper bound	0.3	5.0	< 200	$ C_3^{(6)} /\Lambda^2 = 67$
Capped	Saturated	-0.5	500	> 1000	$ \mathcal{C}_2^{(6)} /\Lambda^2 = 0.22$ $ \mathcal{C}_3^{(6)} /\Lambda^2 = 0.041$
Full (hard cut-off)	Upper bound	2.2	500	> 1250	$ C_3^{(6)} /\Lambda^2 = 0.14$
Full (smooth cut-off)	Upper bound	2.6	320	640	$ \mathcal{C}_{3}^{(6)} /\Lambda^{2} = 0.18$
Full (hard cut-off)	Saturated	1.9	500	> 1250	$ \mathcal{C}_{3}^{(6)} /\Lambda^{2} = 0.047$ $\sqrt{(\mathcal{C}_{2}^{(6)})^{2} + (\mathcal{C}_{4}^{(6)})^{2}}/\Lambda^{2} = 0.15$
Full (smooth cut-off)	Saturated	2.0	420	840	$\begin{aligned} \mathcal{C}_3^{(6)} /\Lambda^2 &= 0.052\\ \sqrt{(\mathcal{C}_2^{(6)})^2 + (\mathcal{C}_4^{(6)})^2}/\Lambda^2 &= 0.23 \end{aligned}$

Table 3: Best-fit points from our various scans involving dimension-6 operators with restricted parameter ranges (5 GeV $\leq m_\chi \leq 500$ GeV and 20 GeV $\leq \Lambda \leq 2$ TeV). Here we only quote the combination that is well-constrained rather than each parameter individually.

