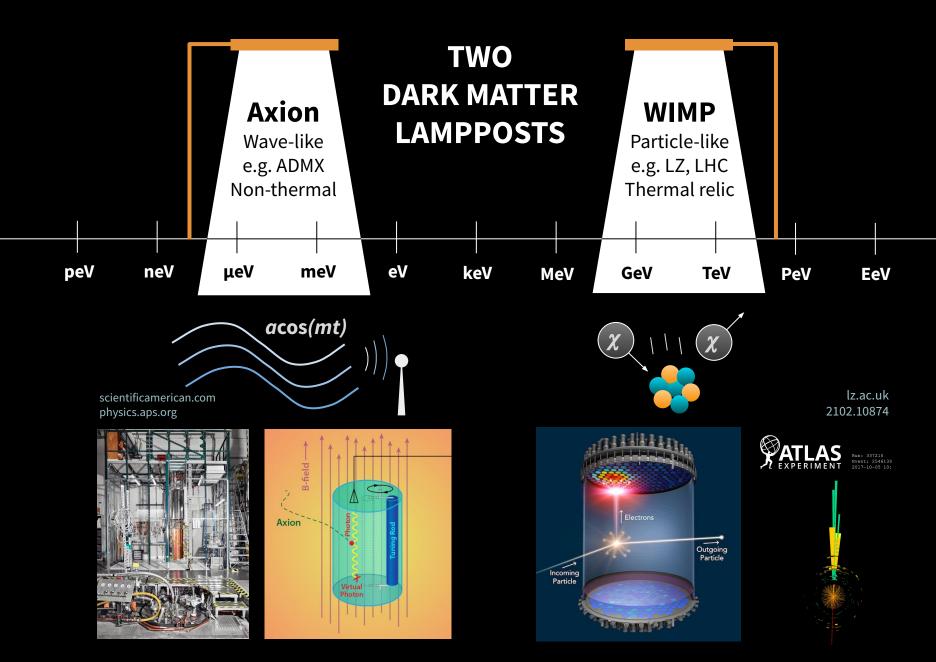


International Conference on High Energy Physics


Bologna, Italy 8 July 2022

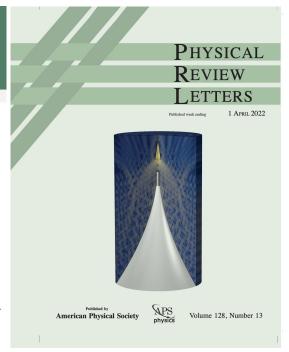
Jesse Liu *for the BREAD Collaboration* University of Cambridge

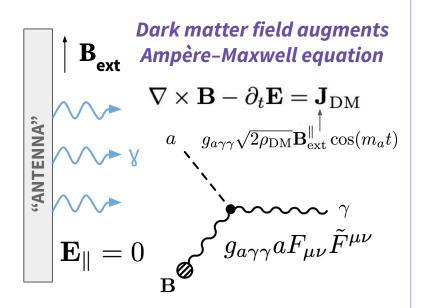
The milli-eV/terahertz axion search problem

Problem 1: Desire broadband but cavity haloscopes narrowband $\Delta m/m \ll 1$ **Problem 2: Desire high mass** but scan rate* R ~ f^{-14/3} impractical for m > 50 μ eV **NEED CREATIVITY TO OVERCOME BOTH LONGSTANDING OBSTACLES**

Broadband Reflector Experiment for Axion Detection

Proposal paper on the cover of PRL & Editors' Suggestion





(BREAD Collaboration)

Step 1: convert DM to photons

a) Oscillating axion field makes conductor emit photons

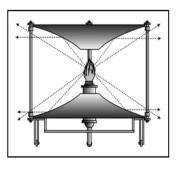
INHERENTLY BROADBAND

No tuning to unknown DM mass

Concept proposed in Horns et al [1212.2970]

b) Make cylindrical to embed in standard solenoids & cryostats

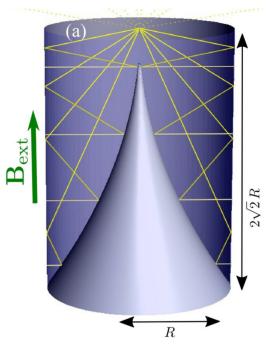
- → Fridge for ADMX science at FNAL (Photo by Kristin Dona)
- ↓ Solenoids for Magnetic Resonance Imaging hopkinsmedicine.org


See also Mark Bird (2020) "Ultra-High Field Solenoids and Axion Detection"

Step 2: collect photons

Historical inspiration Novel parabolic reflector design focuses photons

3D-printed prototype @ FNAL


Proposed dark photon pilot design

Inverse of 19th century lighthouse

Bordier-Marcet 1811

Cylindrically symmetric co-parallel rays from point source uslhs.org

Ray tracing simulation

Gabe Hoshino led in situ measurements with antenna

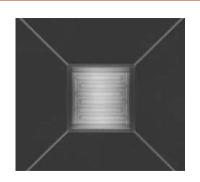
Readout/Control Pulse Tube Cooler 293K Cryocooler Motion Stage Photosensor Signal Signal **Photons** Photons **1** Parabolic Reflector Calibration Source

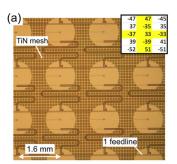
Status: iterating reflector design with engineers

Kate Azar, Matthew Malaker, Gabe Hoshino (summer students)

led detailed simulation studies

JL, Dona et al [2111.12103]

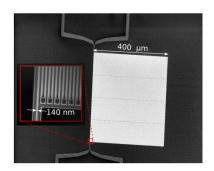

Step 3: detect photons



Lower noise is better ↓

Photosensor	$rac{E}{ m meV}$	$rac{T_{ m op}}{ m K}$	$\frac{\rm NEP}{\rm W/\sqrt{\rm Hz}}$	$\frac{A_{ m sens}}{ m mm^2}$	
GENTEC [97] IR LABS [98] KID/TES [99, 100]	[0.4, 120] [0.24, 248] [0.2, 125]	293 1.6 0.3	$ \begin{array}{c} 1 \cdot 10^{-8} \\ 5 \cdot 10^{-14} \\ 2 \cdot 10^{-19} \end{array} $	$\pi 2.5^{2}$ 1.5^{2} 0.2^{2}	
QCDet [101, 102] SNSPD [103, 104]	[2, 125] [124, 830]	$0.015 \\ 0.3$	$\frac{\frac{\mathrm{DCR}}{\mathrm{Hz}} = 4}{\frac{\mathrm{DCR}}{\mathrm{Hz}} = 10^{-4}}$	0.06^{2} 0.4^{2}	

JL, Dona et al [2111.12103]


Transition Edge Sensor Goldie et al [JLTP 2016]

Kinetic Inductance Detector

Baselmans et al [A&A 2017]

Established technology for astronomy/CMB

Quantum Capacitance Detector

Echternach et al [JATIS 2021]

Superconducting Nanowire Single Photon Detector

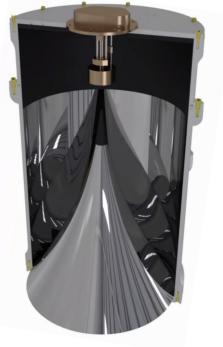
Hochberg et al [1903.05101]

Emerging technology for infrared photon counting

BREAD roadmap to flagship next-gen axion experiment

	Dil	a	G	G. 61			
BREAD	Pilot	Stage 1	Stage 2a	Stage 2b			
Axion a	_	✓	✓	✓			
Dark photon A'	\checkmark	\checkmark	\checkmark	\checkmark			
Experimental parameters							
$A_{\rm dish}~[{ m m}^2]$	0.7	10	10	10			
$B_{ m ext}$ [T]		10	10	10			
ϵ_s	0.5	0.5	0.5	0.5			
$\Delta t [\mathrm{days}]$	10	10	1000	1000			
$NEP [W Hz^{-1/2}]$	10^{-14}	10^{-18}	10^{-20}	10^{-22}			
Coupling sensitivity (SNR = 5)							
$\frac{\left g_{a\gamma\gamma}/g_{a\gamma\gamma}^{\rm KSVZ}\right }{\left g_{a\gamma\gamma}/g_{a\gamma\gamma}^{\rm DFSZ}\right }$ $\kappa/10^{-14}$	_	280	9.0	0.90			
$\left g_{a\gamma\gamma}/g_{a\gamma\gamma}^{ m DFSZ} ight $	- J	740	23	2.3			
$\kappa/10^{-14}$	8400	22	0.7	0.07			

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)


2203.14923 (JL contributing author)

Snowmass 2021 White Paper **Axion Dark Matter**

J. Jaeckel¹, G. Rybka², L. Winslow³, and the Wave-like Dark Matter Community ⁴

¹Institut fuer theoretische Physik, Universitaet Heidelberg, Heidelberg, Germany ²University of Washington, Seattle, WA, USA ³Laboratory of Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA ⁴Updated Author List Under Construction

Figs: Don Mitchell

Hands on 1: build spectrometer to characterize optics

120 125 130 135 140 145

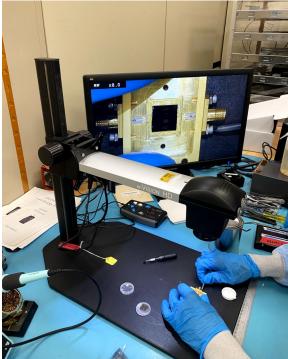
200

FNAL and Argonne

collaborators

250

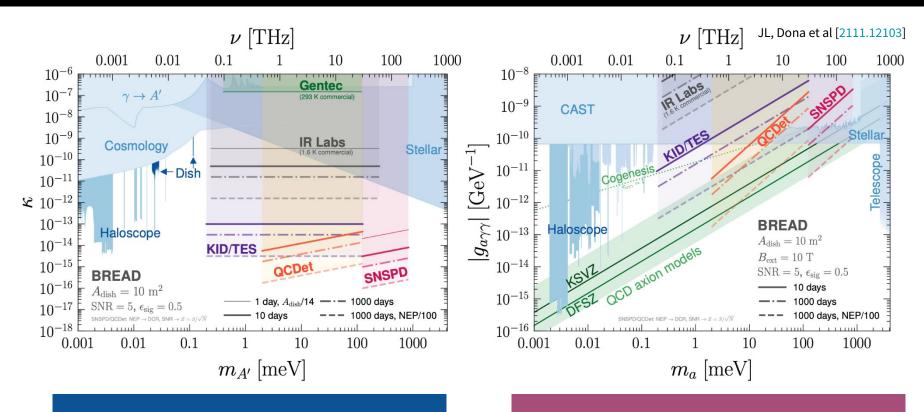
MAIB, **JANUARY 2020** Hardware arrival MANB. & assembly **AUGUST** Laser alignment Fixed mirror 5.0 IR-Si253, bandpass filter Chopper Beam Detector splitter 4.5 4.5 Aower [\(\mathbf{M} \mathbf{M} \)] 4.0 3.5 **OCTOBER** Motorized **Begin** mirror Filter measurements Off-axis parabolic 3.0 Source mirror 50 100 150 Power, control, digitization, readout Mirror displacement [μ m] PAPER Design and performance of a terahertz Fourier transform **APRIL 2021** Funded by DOE HEP-QIS spectrometer for axion dark matter experiments QuantISED grant with Dona, JL et al K. Dona¹, J. Liu¹, N. Kurinsky^{2,3}, D. Miller¹, P. Barry^{2,4}, C. Chang^{2,4} and A. Sonnenschein³


Published 13 June 2022 • © 2022 IOP Publishing Ltd and Sissa Medialab

Journal of Instrumentation, Volume 17, June 2022 Citation K. Dona et al 2022 JINST 17 P06014

2104.07157 (JINST)

Hands on 2: quantum photosensor testing @ Fermilab



Sensitivity: concept → pilot → full science program

DARK PHOTON (VECTOR)

Preparing "sourdough starter" pilot Near term ~3 years proof of principle

$$\begin{cases}
\left(\frac{g_{a\gamma\gamma}}{10^{-12}}\right)^{2} \\
\left(\frac{\kappa}{10^{-15}}\right)^{2}
\end{cases} = \begin{cases}
\frac{3.0}{\text{GeV}^{2}} \left(\frac{m_{a}}{\text{meV}}\right)^{3} \left(\frac{10 \text{ T}}{B_{\text{ext}}}\right)^{2} \\
11.9 \frac{2/3}{\alpha_{\text{pol}}^{2}} \frac{m_{A'}}{\text{meV}}
\end{cases}$$

AXION (PSEUDOSCALAR)

Need high-field magnet & sensor R&D Longer term ~5-10 year timescale

$$+\left(\frac{\text{hour}}{\Delta t}\right)^{1/2} \frac{10 \,\text{m}^2}{A_{ ext{dish}}} \frac{Z}{5} \frac{0.5}{\epsilon_s} \left(\frac{ ext{DCR}}{10^{-2} \, ext{Hz}}\right)^{1/2} \frac{0.45 \, ext{GeV/cm}^3}{
ho_{ ext{DM}}}$$

Innovation at interdisciplinary interfaces

ASTRONOMYOrigins of habitability & life

QUANTUM TECHNOLOGY

Information & sensing

"Think *Inside*, Think *Outside* the box. Make connections to other fields"

NSF Program Director at Snowmass Oct 2020

"Synergies between particle and astroparticle physics should be strengthened"

European Strategy Update Jun 2020

SUMMARY

Broadband Reflector Experiment for Axion Detection

Multidecade discovery reach

Target meV-eV axion & dark photon dark matter

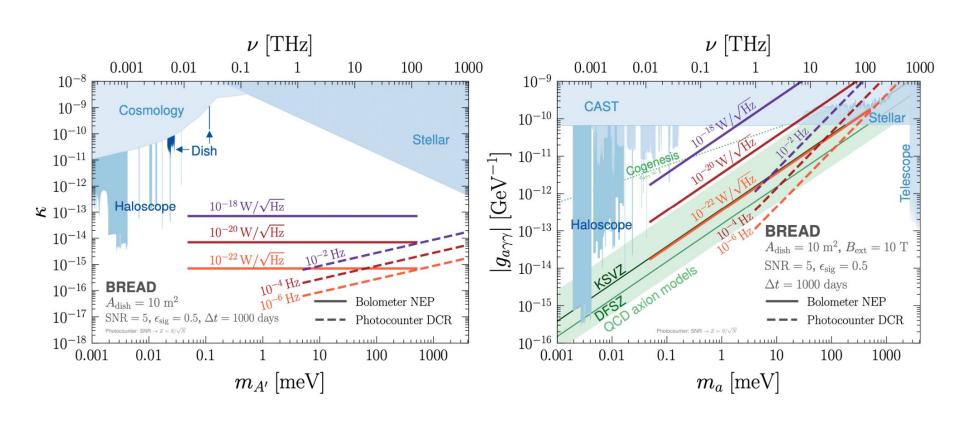
Unique geometry

Practical for standard solenoids & fridges

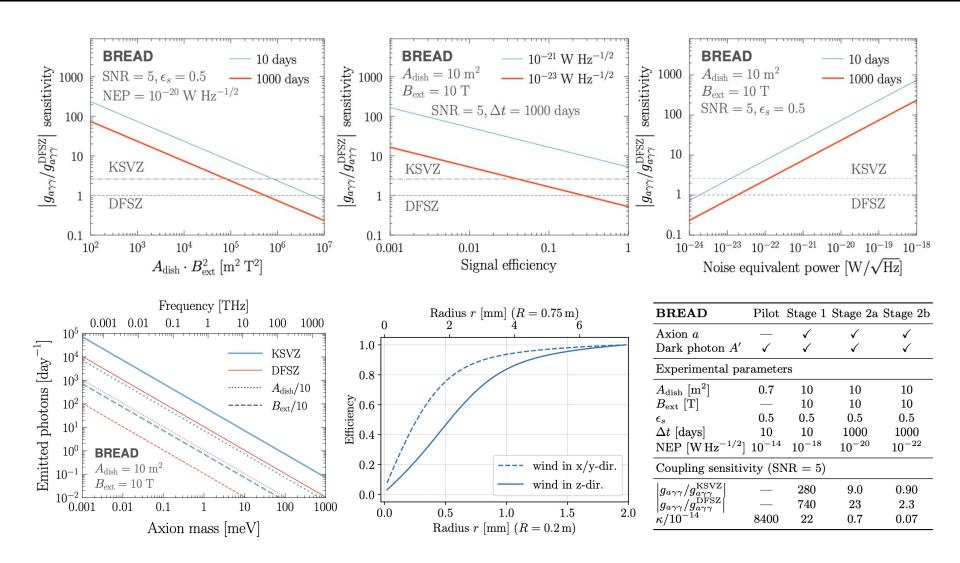
Preparing sensor testing

At Fermilab for near-term pilot – see Kristin Dona's poster

Interdisciplinary synergies


Across HEP, astronomy & quantum technology

Welcoming friendly community \odot


Early stages with much room for individual creativity

EXTRAS

BREAD generic sensitivity

BREAD experimental considerations

