FIRST WIMP SEARCH RESULTS FROM THE LUX-ZEPLIN EXPERIMENT Amy Cottle, University of Oxford

COLLABORATION

Science and Technology Facilities Council

<u>@Izdarkmatter</u> https://lz.lbl.gov/

INTRODUCTION TO LZ

<u>NIM A, 163047 (2019)</u>

- Based at the Sanford Underground
- Dual-phase xenon time projection •

TPC DETECTION PRINCIPLE

- Interactions in the xenon create
 - Light prompt scintillation S1
 - Charge electrons drifted and extracted into gas -> proportional scintillation - S2
- Excellent 3D position reconstruction (~mm)
- Distinguish between single scatter (SS) and multiple scatter (MS) interactions
- S2:S1 ratio discriminate electronic recoils (ERs) from potential WIMP nuclear recoils (NRs)

Incoming Particle

VETO DETECTOR ANTI-COINCIDENCE

- 17 tonnes Gd-loaded scintillator in OD

TPC & SKIN ASSEMBLY

OD CONSTRUCTION & UNDERGROUND INSTALLATION

Water Tank Panoramic

Cryostat Insertion

Instrumented OD

FIRST SCIENCE RUN (SR1)

[sm

- 116 calendar days -> 89 live days
- Stable detector conditions •
 - Temperature of 174.1 K
 - Gas pressure of 1.791 bar
 - Drift field of 193 V/cm
 - Extraction field of 7.3 kV/cm (in gas)
- Continuous purification at 3.3 t/day through hot getter system
- Demonstration run, not blinded

8

TPC CALIBRATIONS

- Backgrounds predominantly ERs; WIMPs produce NRs
- Tritiated methane (CH₃T) injection to calibrate ER band
 - Spatially homogenous β source
- DD neutron generator (NR band) •
 - Monoenergetic 2.45 MeV neutrons
- 99.9% discrimination of beta backgrounds under NR band median achieved

4.50 4.25 4.00[[phd]] 3.75 S2(3.50 \log_{10} 3.25 3.00 2.75 2.50

RADON BACKGROUNDS

- Naked Pb β decays main WIMP background
 - Produced from emanated Rn in TPC xenon
- Rn-chain alpha tagging measurements performed with S1s at energies >> WIMP ROI

Rn222 (µBq/kg)	Po218 (µBq/kg)	Po214 (µBq/
4.37 ± 0.31	4.51 ± 0.32	2.56 ± 0.2

- Rn222 activity within assay expectations
- Po218/Po214 rates bound Pb214 rate

INTERNAL BACKGROUNDS

- Kr85 constrained by sampling at 144 +/- 22 ppq g/g nat Kr/Xe

Activated xenon & contaminant rates informed via energy spectra fits & analyses >40 keVee - Pb214 (3.26 µBq/kg) & Xe127 (36.9 µBq/kg SR1-averaged) constraints for WIMP analysis

ACCIDENTAL COINCIDENCE BACKGROUNDS

- Lone S1s & S2s can accidentally combine to form WIMP ROI events
- Data-driven estimation of distribution
- Event classification drift time agnostic
 - Drift time >1 ms = definite accidentals
 - Population used to inform rate
- Lone S1 & S2 waveforms extracted and stitched together to form fake events
 - Can produce statistics to assess shape
- Analysis cuts developed to combat observed pulse/event pathologies

counts/tonne/year

12

WIMP ANALYSIS - ROI & FV

- Region of Interest definition •
 - 3 < S1c < 80 photons detected (phd); three-fold PMT coincidence
 - Uncorrected S2 > 600 phd; log10 (S2c) < 5
- Fiducial volume (FV) definition •
 - 86 us < drift time < 936.5 us cut to avoid higher background rates at TPC edges
 - Radial cut chosen to ensure <0.01 wall ____ background counts in the FV
- Calculated fiducial mass of 5.5 ± 0.2 t •

WIMP ANALYSIS - CUTS & DATA QUALITY

1.0

- Event selection criteria
 - FV, ROI, single scatter cuts
 - Veto detector anti-coincidence
 - S1/S2 shape cuts
- Cuts developed on non-WIMP ROI background & calibration data
- Rejection of live time with detector instabilities, high TPC pulse rates
 - 60.3 ± 1.2 live days

WIMP ANALYSIS - DATA & STATISTICAL INFERENCE

• 335 events after all cuts

- PDFs created with energy deposit + detector response simulations*
- Profile likelihood ratio analysis

Key

- 1 & 2-Sigma Contours
- Post-fit total background distribution
- Ar37
- B8
- 30 GeV/c² WIMP

NR band from DD

* j.astropartphys.2020.102480

WIMP ANALYSIS - BACKGROUNDS & STATISTICAL INFERENCE

Component	Expected Events	Best Fit Events
β decays & detector γs	218 ± 36	222 ± 16
Ar37	[0, 291]	$52.1^{+9.6}_{-8.9}$
Xe127	9.2 ± 0.8	9.3 ± 0.8
Xe124	5.0 ± 1.4	5.2 ± 1.4
Xe136	15.2 ± 2.4	15.3 ± 2.4
Solar v ERs	27.3 ± 1.6	27.3 ± 1.6
B8 CEvNS	0.15 ± 0.01	0.15 ± 0.01
Det. Neutrons	$0.00^{+0.02}$	$0.00^{+0.02}$
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Total w/o ³⁷ Ar	276 ± 36	281 ± 16
Total w/ 37Ar		333 ± 17

WIMP ANALYSIS - SR1 LIMIT

- Two-sided PLR search as per recommended conventions*
- Minimum cross-section of σ_{SI} = 5.9 × 10⁻⁴⁸ cm² for WIMP mass of 30 GeV/c²
- No evidence for WIMPs

<u>Key</u>

- Observed limit
- --- Median expected sensitivity
- •--• Median 3-sigma evidence

CONCLUSIONS & FUTURE PLANS

- All LZ systems are performing well
- Background validations proceeding
- World-leading spin-independent WIMP search limit achieved
- Preparing for a year-long run & ultimately 1000 live days of data
 - Detector optimisation & calibrations campaign in motion
- Additional papers in preparation
- <u>XLZD consortium</u> formed, looking towards a next-generation project

First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

J. Aalbers,^{1,2} D.S. Akerib,^{1,2} C.W. Akerlof,³ A.K. Al Musalhi,⁴ F. Alder,⁵ A. Alqahtani,⁶ S.K. Alsum,⁷ C.S. Amarasinghe,³ A. Ames,^{1,2} T.J. Anderson,^{1,2} N. Angelides,^{5,8} H.M. Araújo,⁸ J.E. Armstrong,⁹ M. Arthurs,³ S. Azadi,¹⁰ A.J. Bailey,⁸ A. Baker,⁸ J. Balajthy,¹¹ S. Balashov,¹² J. Bang,⁶ J.W. Bargemann,¹⁰ M.J. Barry,¹³ J. Barthel,¹⁴ D. Bauer,⁸ A. Baxter,¹⁵ K. Beattie,¹³ J. Belle,¹⁶ P. Beltrame,^{5,17} J. Bensinger,¹⁸ T. Benson,⁷ E.P. Bernard,^{13,19} A. Bhatti,⁹ A. Biekert,^{13,19} T.P. Biesiadzinski,^{1,2} H.J. Birch,^{3,15} B. Birrittella,⁷ G.M. Blockinger,²⁰ K.E. Boast,⁴ B. Boxer,^{11, 15} R. Bramante,^{1, 2} C.A.J. Brew,¹² P. Brás,²¹ J.H. Buckley,²² V.V. Bugaev,²² S. Burdin,¹⁵ J.K. Busenitz,²³ M. Buuck,^{1,2} R. Cabrita,²¹ C. Carels,⁴ D.L. Carlsmith,⁷ B. Carlson,¹⁴ M.C. Carmona-Benitez,²⁴ M. Cascella,⁵ C. Chan,⁶ A. Chawla,²⁵ H. Chen,¹³ J.J. Cherwinka,⁷ N.I. Chott,²⁶ A. Cole,¹³ J. Coleman,¹³ M.V. Converse,²⁷ A. Cottle,^{4,16} G. Cox,^{14,24} W.W. Craddock,¹ O. Creaner,¹³ D. Curran,¹⁴ A. Currie,⁸ J.E. Cutter,¹¹ C.E. Dahl,^{16,28} A. David,⁵ J. Davis,¹⁴ T.J.R. Davison,¹⁷ J. Delgaudio,¹⁴ S. Dey,⁴ L. de Viveiros,²⁴ A. Dobi,¹³ J.E.Y. Dobson,⁵ E. Druszkiewicz,²⁷ A. Dushkin,¹⁸ T.K. Edberg,⁹ W.R. Edwards,¹³ M.M. Elnimr,²³ W.T. Emmet,²⁹ S.R. Eriksen,³⁰ C.H. Faham,¹³ A. Fan,^{1,2,*} S. Fayer,⁸ N.M. Fearon,⁴ S. Fiorucci,¹³ H. Flaecher,³⁰ P. Ford,¹² V.B. Francis,¹² E.D. Fraser,¹⁵ T. Fruth,^{4,5} R.J. Gaitskell,⁶ N.J. Gantos,¹³ D. Garcia,⁶ A. Geffre,¹⁴ V.M. Gehman,¹³ J. Genovesi,²⁶ C. Ghag,⁵ R. Gibbons,^{13, 19} E. Gibson,⁴ M.G.D. Gilchriese,¹³ S. Gokhale,³¹ B. Gomber,⁷ J. Green,⁴ A. Greenall,¹⁵ S. Greenwood,⁸ M.G.D.van der Grinten,¹² C.B. Gwilliam,¹⁵ C.R. Hall,⁹ S. Hans,³¹ K. Hanzel,¹³ A. Harrison,²⁶ E. Hartigan-O'Connor,⁶ S.J. Haselschwardt,¹³ S.A. Hertel,³² G. Heuermann,³ C. Hjemfelt,²⁶ M.D. Hoff,¹³ E. Holtom,¹² J.Y-K. Hor,²³ M. Horn,¹⁴ D.Q. Huang,^{3,6} D. Hunt,⁴ C.M. Ignarra,^{1,2} R.G. Jacobsen,^{13,19} O. Jahangir,⁵ R.S. James,⁵ S.N. Jeffery,¹² W. Ji,^{1,2} J. Johnson,¹¹ A.C. Kaboth,^{12, 25, †} A.C. Kamaha,^{20, 33} K. Kamdin,^{13, 19} V. Kasey,⁸ K. Kazkaz,³⁴ J. Keefner,¹⁴ D. Khaitan,²⁷ M. Khaleeq,⁸ A. Khazov,¹² I. Khurana,⁵ Y.D. Kim,³⁵ C.D. Kocher,⁶ D. Kodroff,²⁴ L. Korley,^{3, 18} E.V. Korolkova,³⁶ J. Kras,⁷ H. Kraus,⁴ S. Kravitz,¹³ H.J. Krebs,¹ L. Kreczko,³⁰ B. Krikler,³⁰ V.A. Kudryavtsev,³⁶ S. Kyre,¹⁰ B. Landerud,⁷ E.A. Leason,¹⁷ C. Lee,^{1, 2} J. Lee,³⁵ D.S. Leonard,³⁵ R. Leonard,²⁶ K.T. Lesko,¹³ C. Levy,²⁰ J. Li,³⁵ F.-T. Liao,⁴ J. Liao,⁶ J. Lin,^{4, 13, 19} A. Lindote,²¹ R. Linehan,^{1, 2} W.H. Lippincott,^{10, 16} R. Liu,⁶ X. Liu,¹⁷ Y. Liu,⁷ C. Loniewski,²⁷ M.I. Lopes,²¹ E. Lopez Asamar,²¹ B. López Paredes,⁸ W. Lorenzon,³ D. Lucero,¹⁴ S. Luitz,¹ J.M. Lyle,⁶ P.A. Majewski,¹² J. Makkinje,⁶ D.C. Malling,⁶ A. Manalaysay,^{11,13} L. Manenti,⁵ R.L. Mannino,⁷ N. Marangou,⁸ M.F. Marzioni,¹⁷ C. Maupin,¹⁴ M.E. McCarthy,²⁷ C.T. McConnell,¹³ D.N. McKinsey,^{13,19} J. McLaughlin,²⁸ Y. Meng,²³ J. Migneault,⁶ E.H. Miller,^{1, 2, 26} E. Mizrachi,^{9, 34} J.A. Mock,^{13, 20} A. Monte,^{10, 16} M.E. Monzani,^{1, 2, 37} J.A. Morad,¹¹ J.D. Morales Mendoza,^{1, 2} E. Morrison,²⁶ B.J. Mount,³⁸ M. Murdy,³² A.St.J. Murphy,¹⁷ D. Naim,¹¹ A. Naylor,³⁶ C. Nedlik,³² C. Nehrkorn,¹⁰ H.N. Nelson,¹⁰ F. Neves,²¹ A. Nguyen,¹⁷ J.A. Nikoleyczik,⁷ A. Nilima,¹⁷ J. O'Dell,¹² F.G. O'Neill,¹ K. O'Sullivan,^{13,19} I. Olcina,^{13,19} M.A. Olevitch,²² K.C. Oliver-Mallory,^{8,13,19} J. Orpwood,³⁶ D. Pagenkopf,¹⁰ S. Pal,²¹ K.J. Palladino,^{4,7} J. Palmer,²⁵ M. Pangilinan,⁶ N. Parveen,²⁰ S.J. Patton,¹³ E.K. Pease,¹³ B. Penning,^{3, 18} C. Pereira,²¹ G. Pereira,²¹ E. Perry,⁵ T. Pershing,³⁴ I.B. Peterson,¹³ A. Piepke,²³ J. Podczerwinski,⁷ D. Porzio,^{21,‡} S. Powell,¹⁵ R.M. Preece,¹² K. Pushkin,³ Y. Qie,²⁷ B.N. Ratcliff,¹ J. Reichenbacher,²⁶ L. Reichhart,⁵ C.A. Rhyne,⁶ A. Richards,⁸ Q. Riffard,^{13,19} G.R.C. Rischbieter,²⁰ J.P. Rodrigues,²¹ A. Rodriguez,³⁸ H.J. Rose,¹⁵ R. Rosero,³¹ P. Rossiter,³⁶ T. Rushton,³⁶ G. Rutherford,⁶ D. Rynders,¹⁴ J.S. Saba,¹³ D. Santone,²⁵ A.B.M.R. Sazzad,²³ R.W. Schnee,²⁶ P.R. Scovell,^{4, 12} D. Seymour,⁶ S. Shaw,¹⁰ T. Shutt,^{1,2} J.J. Silk,⁹ C. Silva,²¹ G. Sinev,²⁶ K. Skarpaas,¹ W. Skulski,²⁷ R. Smith,^{13,19} M. Solmaz,¹⁰ V.N. Solovov,²¹ P. Sorensen,¹³ J. Soria,^{13, 19} I. Stancu,²³ M.R. Stark,²⁶ A. Stevens,^{4, 5, 8} T.M. Stiegler,³⁹ K. Stifter,^{1, 2, 16} R. Studley,¹⁸ B. Suerfu,^{13, 19} T.J. Sumner,⁸ P. Sutcliffe,¹⁵ N. Swanson,⁶ M. Szydagis,²⁰ M. Tan,⁴ D.J. Taylor,¹⁴ R. Taylor,⁸ W.C. Taylor,⁶ D.J. Temples,²⁸ B.P. Tennyson,²⁹ P.A. Terman,³⁹ K.J. Thomas,¹³ D.R. Tiedt,^{9,14,26} M. Timalsina,²⁶ W.H. To,^{1,2} A. Tomás,⁸ Z. Tong,⁸ D.R. Tovey,³⁶ J. Tranter,³⁶ M. Trask,¹⁰ M. Tripathi,¹¹ D.R. Tronstad,²⁶ C.E. Tull,¹³ W. Turner,¹⁵ L. Tvrznikova,^{19, 29, 34} U. Utku,⁵ J. Va'vra,¹ A. Vacheret,⁸ A.C. Vaitkus,⁶ J.R. Verbus,⁶ E. Voirin,¹⁶ W.L. Waldron,¹³ A. Wang,^{1,2} B. Wang,²³ J.J. Wang,²³ W. Wang,^{7,32} Y. Wang,^{13,19} J.R. Watson,^{13,19} R.C. Webb,³⁹ A. White,⁶ D.T. White,¹⁰ J.T. White,^{39,‡} R.G. White,^{1,2} T.J. Whitis,^{1,10} M. Williams,^{3,18} W.J. Wisniewski,¹ M.S. Witherell,^{13,19} F.L.H. Wolfs,²⁷ J.D. Wolfs,²⁷ S. Woodford,¹⁵ D. Woodward,^{24, §} S.D. Worm,¹² C.J. Wright,³⁰ Q. Xia,¹³ X. Xiang,⁶ Q. Xiao,⁷ J. Xu,³⁴ M. Yeh,³¹ J. Yin,²⁷ I. Young,¹⁶ P. Zarzhitsky,²³ A. Zuckerman,⁶ and E.A. Zweig³³ (The LUX-ZEPLIN (LZ) Collaboration)

Paper Link

BACKUP SLIDES

TPC ENERGY RESPONSE

- S1s & S2s position-corrected using ^{131m}Xe background, ^{83m}Kr calibration
- Doke plot constructed with monoenergetic electron recoil peaks

VETO DETECTOR RESPONSE

- Skin & OD response and inter-detector timings calibrated
 - OD optical calibration system
 - External γ-ray & neutron sources (e.g. ²²Na; DD, AmLi, ²⁵²Cf)
- ¹²⁷Xe Skin tagging efficiency of 78 ± 5% based on K-shell analysis
- OD tagging efficiency of TPC-interacting neutrons of $89 \pm 1\%$ (AmLi calibrations)
 - TPC-OD coincidence window: 1200 µs; threshold equivalent to ~200 keV

LIVE TIME VETOES

- thus contributing to accidental coincidence backgrounds
- Removal of periods • after S2s (e-/ph trains) excludes ~30% of our live time
- Working on optimising this live time veto for future runs

LIMIT SHAPE

Downward fluctuation in limit caused by deficiency of events under Ar37 contour

Calibrations and Xe127 M-shell counts as expected under signal acceptance model -> background under-fluctuation

AR37 ESTIMATE

- Ar37 a significant background in early LZ data/SR1 WIMP search
 - K-shell e⁻ capture -> 2.8 keV
 - $\tau_{1/2} = 35$ days
- Can be produced via cosmic spallation on xenon
 - Calculated using the ACTIVIA package & estimated exposure of the xenon during transport*
 - Large uncertainties in spallation cross-section

* PRD 105, 082004 (2022)

DETECTOR NEUTRON CONSTRAINT

- Perform fit to events passing all WIMP search cuts except OD anticoincidence to constrain neutrons
 - Expect ~8 times more neutrons than in the WIMP search due to OD veto efficiency
 - In contrast, only 5% of nonneutron backgrounds should be OD-tagged
- Result of fit -> number of neutrons in SR1 WIMP search is <0.2 events (two-sided constraint)

5.0

4.5 ([phd]) 4.0 3.5 3.5

3.0

