

New Strategies and Targets for Probing Velocity-Dependent Dark Matter Annihilation

Jason Kumar University of Hawaii

col a porators

Eric J. Baxter

- Bradly Boucher
- Jacob Christ
- Kenny Kiriu
- Van B. Le
- Aleczander D. Paul
- Jack Runburg

JCAP 06 (2022) 023 (2106.10399), 2110.09653, 2112.00255, 2205.02386, 220x.xxxx

faculty, graduate student, undergraduate student

- dark matter annihilation in halos can yield γ-rays
 - strong constraints, and potential signals
- velocity-dependent annihilation can affect the signal magnitude
 - velocity scale varies from halo to halo
 - these effects are encoded in the effective J-factor
- lots of recent work focused on determining the effective J-factor
 - more references than I can list...
- our question is...
- ... can we discriminate the velocity-dependence using a future signal?
- here, I'll focus on subhalos and extragalactic halos

general formalism

 $\sigma v = (\sigma v)_0 \times (v / c)^n$

- assume cross section has power law velocity-dependence
 - n=-1 (Sommerfeld-enhanced)
 - n=0 (s-wave)
 - n=2 (p-wave)
 - n=4 (d-wave)
- assume small angular size $(r_s/D \ll 1)$
- can factorize flux into ...
- … Φ_{PP} (particle physics)
- ... J (astrophysics)

$$\frac{d\Phi}{dE} = \frac{1}{4\pi D^2} \frac{dN}{dE} \int dV \int dv_1^3 \int dv_2^3 \frac{f(\vec{v}_1, \vec{r})}{m_{\chi}} \frac{f(\vec{v}_2, \vec{r})}{m_{\chi}}$$

$$\times \frac{\sigma |\vec{v}_1 - \vec{v}_2|}{2}$$

$$= \frac{d\Phi_{pp}}{dE} \times J$$

$$\begin{aligned} \frac{d\Phi_{PP}}{dE} &= \frac{(\sigma v)_0}{8\pi m_\chi^2} \frac{dN}{dE} \\ J_n^{tot} &= \frac{1}{D^2} \int dV \int dv_1^3 \int dv_2^3 f(\vec{v}_1, \vec{r}) f(\vec{v}_1, \vec{r}) \\ &\times (\left|\vec{v}_1 - \vec{v}_2\right| / c)^n \end{aligned}$$

parametric dependence

- assume vel.-distribution has fixed functional form, but depends on
 - ρ_s (scale density)
 - r_s (scale radius)
 - G_N (Newton's constant)
- can scale out all dependence on dimensionful parameters
- J_n depends on functional form of f
 - degenerate with Φ_{PP} ...
- but all parametric dependence has been factored out

 $M_{_s}\!=\!\rho_{_s}r_{_s}^3$

$$v_0 = \sqrt{4\pi G_N \rho_s r_s^2}$$

 $\tilde{\mathbf{r}} = \mathbf{r} / \mathbf{r}_{s}$ $\tilde{\mathbf{v}} = \mathbf{v} / \mathbf{v}_{0}$ $\mathbf{f}(\mathbf{v}, \mathbf{r}) = \left(\mathbf{\rho}_{s} \mathbf{v}_{0}^{-3}\right) \tilde{\mathbf{f}}(\tilde{\mathbf{v}}, \tilde{\mathbf{r}})$

$$I_n^{tot} = \frac{\rho_s^2 r_s^3}{D^2} \left(\frac{4\pi G_N \rho_s r_s^2}{c^2} \right)^{n/2} \tilde{J}_n^{tot}$$

extragalactic halos

- relatively high speeds
 - focus on p-/d-wave
- use SDSS halo catalog
 - halo masses and redshift
- relate halo mass to ρ_s and r_s using cosmological prior from sim.
 - $L \propto M^{0.86+0.32n}$
- given M and D, halo flux determined up to overall constant
- assume halos have astrophysical bgd with L ∝ M
 - just a model, resolve using multiwavelength astronomy

Sloan Digital Sky Survey footprint

results

- generate mock data
 - p-wave (10⁴ cm² yr)
 - DM signal at dSph limit
 - N_{aniso} = N_{DM}
 - include isotropic and Fermi galactic bgd model
- compare likelihood given p-wave (n=2) or d-wave (n=4) model
- with this exposure, can tell there is DM, but not n=2 vs. n=4
- with 10× larger exposure, can pick out velocity dependence
- but only shows info is there, given sufficient knowledge of bgd

Exposure $= 10^5 \mathrm{cm}^2 \mathrm{yr}$	$n=2 \mod$	$n = 4 \mod$
$\Delta \ln \mathcal{L}$	0	22.5
$N_{\rm DM}$ at maximum likelihood	50845.9	12189.4
N_{aniso} at maximum likelihood	48606.7	99868.2
$N_{\rm iso}$ at maximum likelihood	3635062.4	3622512.9

unresolved subhalos

- smaller velocities, favors Sommerfeld-enhanced models (n=-1)
- signal arises from summing over all unresolved subhalos in a pixel
- no stellar data with which to pick out subhalo parameters
 - assume subhalo parameters are drawn from a distribution
 - luminosity distribution independent of position
- (luminosity) depends on n, but degenerate with Φ_{PP}
- but the flux is now drawn from a broad distribution
- leads to non-Poisson fluctuations in the photon count in pixel, due to fluctuations in which a large, bright subhalo appears (LAK 0810.1284, BDKS 1006.2399)

analysis

- assume a subhalo mass function and $\rho_s r_s$ relation drawn from simulation
- for n=0,-1, get a subhalo luminosity distribution
- integrate along l-o-s to get flux distribution for a single subhalo
- if actual number of subhalos is Poisson-distributed, end up with a total flux distribution
- non-Poisson count distribution driven by fluctuations in large, bright subhalos

results

- maximize likelihood of mock data to infer n and normalization
- vary iso. bgd., including mismodeled aniostropic bgd., smearing bgd scale
- can still infer parameters and distinguish different non-Poisson signals from each other, and Poisson signal
- knowledge of the non-Poisson count distribution gives you some resilience to mismodeling
- evidence may be there in current Fermi data

True model	v.s. free b_{iso} + Poisson	v.s. free $b_{iso} + s$ -wave	v.s. free b_{iso} + Sommerfeld
Poisson		35.9	19.9
s-wave	21.3		35.5
Sommerfeld	24.7	46.3	

correct aniso. bgd.

True model	v.s. free b_{iso} + Poisson	v.s. free $b_{iso} + s$ -wave	v.s. free b_{iso} + Sommerfeld	
Poisson		35.3	19.2	
s-wave	43.5		55.3	
Sommerfeld	49.9	67.4		
aniso bgd overestimated				

True model	v.s. free b_{iso} + Poisson	v.s. free $b_{iso} + s$ -wave	v.s. free b_{iso} + Sommerfeld
Poisson		36.1	20.1
s-wave	1.3		17.6
Sommerfeld	5.2	29.9	

aniso. bgd. underestimated

ABCs of energy information

- so far, have only used photon counts, not spectral information
- including energy information makes exact likelihood intractable
- basically, easy to compute the likelihood of any particular set of processes producing photons with particular energies
- hard to sum over all possible ways to partition photons among processes
- get large nested convolutions which are trivial if likelihoods are Poisson, intractable if not
- need some form of likelihood-free inference (LFI)
- we will use Approximate Bayesian Computation (ABC)

ABC

• point

- hard to compute the exact likelihood of the data,...
- but easy to generate mock data
- game plan
 - scan over parameter points (prior), generating lots mock data
 - find how "close" mock data is to "actual" data, by some metric
 - density of trials passing cut approximates posterior, without likelihood
- applications of technique to GC?

conclusion

- dark matter annihilation in halos of different scales can provide evidence for the velocity-dependence of the cross section
- halo parameters determine characteristic velocity
- for extragalactic halos, can use galaxy surveys
- for unresolved halos, velocity-dependence determines non-Poisson photon count distribution

- either way, need to worry about backgrounds and systematic uncertainties
- but statistical power is there in current Fermi data

Mahalo!

Backup Slides

other parameters

- other variations between halos?
 - baryons, triaxiality, anisotropy
- new parameters in f
- yield scatter in mass-velocity or mass-concentration relation
- scatter seen in Illustris simulations, but small
- point → there can be, and are, other dimensionless parameters which we don't consider
- but variation between halos is small compared to variation in M_s

angular distribution

- angular distribution is set by angular scale $\theta_0 = r_s / D$
- starting point is vel.-dist. (f)
- assume spherical symmetry and J_n isotropy

 can solve for f using Eddington inversion

$$\begin{split} P_n^2(\tilde{r}) &= \int d^3 \tilde{v}_1 \ d^3 \tilde{v}_2 \ \tilde{f}(\tilde{v}_1, \tilde{r}) \ \tilde{f}(\tilde{v}_2, \tilde{r}) \times \left(\left| \tilde{v}_1 - \tilde{v}_2 \right| / c \right)^n \\ \tilde{J}_n(\tilde{\theta}) &= \int_0^\infty d\tilde{r} \ \left[1 - \left(\frac{\tilde{\theta}}{\tilde{r}} \right) \right]^{-1/2} P_n^2(\tilde{r}) \\ \tilde{J}_n^{tot} &= \int_0^\infty d\tilde{\theta} \ \tilde{\theta} \ \tilde{J}_n(\tilde{\theta}) \end{split}$$

$$\tilde{\rho}(\tilde{r}) = 4\sqrt{2}\pi \int_{\tilde{\Phi}(\tilde{r})}^{\tilde{\Phi}(\infty)} d\tilde{E} \tilde{f}(\tilde{E}) \sqrt{\tilde{E} - \tilde{\Phi}(\tilde{r})}$$
$$\tilde{f}(\tilde{E}) = \frac{1}{\sqrt{8}\pi^2} \int_{\tilde{E}}^{\tilde{\Phi}(\infty)} \frac{d^2 \tilde{\rho}}{d\tilde{\Phi}^2} \frac{d\tilde{\Phi}}{\sqrt{\tilde{\Phi} - \tilde{E}}}$$

 $\tilde{\theta} = \theta / \theta_0$

generalized NFW, outer slope = 3

analytic approximation – cuspy profile

- focus on inner slope region
 - ρ∝r^{-γ}
 - $\Phi_{\text{DM}} \propto r^{2-\gamma}$
- can now solve for f(E) with a power-law ansatz
- can solve for J-factor at small angle
- $J \propto \theta^{\alpha}$, $\alpha = 1+n+\gamma[1-(6+n)/2]$
- for n=-1 (Sommerfeld), γ > 4/3, rate diverges at cusp
 - need to break Coulomb limit, or account for annihilation in profile

$$\begin{split} \tilde{\rho}(\tilde{r}) = & 4\sqrt{2}\pi \int_{\tilde{\Phi}(\tilde{r})}^{\tilde{\Phi}(\infty)} d\tilde{E} \ \tilde{f}(\tilde{E}) \sqrt{\tilde{E} - \tilde{\Phi}(\tilde{r})} \\ \tilde{f}(\tilde{E}) \propto & \tilde{E}^{(\gamma-6)/[2(2-\gamma)]} \end{split}$$

results

- for 2γ / (2-γ) > n, annih. rate in inner slope dominated by particles which never leave
 - shape independent of outer slope
- at small θ, degeneracy between γ and n
- broken by normalization, which is controlled by cuspiness
- with sufficient angular resolution, can break the degeneracy

Galactic Center

- GC excess models constrained by dSph searches for s-wave annih.
- so p-/d-wave is interesting
 - can morphology match?
- can again make an analytic approx. for f(E) and J(θ)
- but potential is dominated by baryons – take spherical approx.
- potential in bulge region grows as a power law (what else?)
- $J \propto \theta^{\alpha}$, $\alpha = 1 2\gamma + (n/2)$
- angular distribution has degeneracy between γ and n

 $c_0 = 0.6 \text{ kpc}$

note, the halo is no longer far away, but the bulge is... so assume DM annihilation along the line of sight is dominated by the bulge

good approximation

J-factors for GC

- if γ > n/2, J dominated by particles which don't leave bulge
 - ang. dist. insensitive to full shape
 - if γ < n/2, small fraction of high-v particles dominates rate
- for s-wave, matching GC excess requires $\gamma \sim 1.2$ -1.3 (HG,1010.2752)
- to match morphology with pwave model, need $\gamma \sim 1.7$ -1.8
 - steep, but stellar data is not very constraining
 - hard to probe bulge with simulations

steeper profile also gives more annihilation near BH at GC (SSY, 1701.00067)

skymaps

normalize signal to 5000 photons \rightarrow limit of what p-wave could produce in SDSS halos, given bounds from dSphs (MADHAT) for 10⁴ cm² yr exposure for s-wave, this is ruled out unless there is a boost factor from subhalos

-3.75 2.5

(e) Galactic background.

non-Poisson fluctuations

- point → photon count distrib.
 P(C) is a convolution of
 - the probability of having flux F from pixel, and
 - the probability of flux F yielding C photons (Poisson)
- if flux distribution is a δ -function, P(C) is Poisson
 - limit of a continuum source
- else, non-Poisson photon count driven by fluctuations in number of subhalos

$$P(C) = \int dF P_{flux}(F) \times P(C|F \times exposure)$$

 also important tool for studying GC excess (see, for example, LLSSX 1504.05124)

generate mock skymaps

Signal only, s-wave

Signal only, Sommerfeld enh.

results

analytic approx. – cored profile

• in this case, angular distribution is independent of angle

subhalo parameters from data

- assume dark matter distribution is NFW, and is the only source of the gravitational potential
- assume stellar distribution is a Plummer profile with constant stellar anisotropy
- solve spherical Jeans equation for the radial stellar velocity dispersion, and fit to data
- determines NFW profile parameters
- to estimate reduction in uncertainties from future surveys ...
 - use ugali software package to estimate number of stars at a given magnitude, given dSph brightness
 - assume all stars above a certain magnitude are seen (N)
 - assume J-factor uncertainty scales with $N^{-1/2}$

distributions from simulation

- mass function
- take $M_{halo} \propto M_s = \rho_s r_s^3$
- get $\rho_s r_s$ relation from simulation relation between M_{halo} and velocity dispersion
- $M_s \propto r_s^{0.8}$
- very mild dependence on position... we'll ignore

$$\begin{split} &\tilde{\rho}_{\text{NFW}}\!\left(\tilde{r}\right) \!=\! \frac{1}{\tilde{r}\!\left(1\!+\!\tilde{r}\right)^2} \\ &r_{\!s(\text{MW})} \!=\! 21\,\text{kpc} \end{split}$$

$$\begin{split} \frac{d^2 N}{d M d V} &= A \left(\frac{M}{M_{\odot}} \right)^{-\beta} \rho_{MW} \left(r \right) \\ A &= 1.2 \times 10^{-4} M_{\odot}^{-1} kpc^{-3} \\ \beta &= 1.9 \\ M_{min} &= 0.1 M_{\odot} \\ M_{max} &= 10^{10} M_{\odot} \end{split}$$

flux distributions

- $\langle \ln L_{sh} \rangle$ comes from parametric J-factor, without $4\pi D^2$
- choice of pixel largely just determines µ, the expected number of subhalos per pixel
- P_{sh} is a convolution
 - can rewrite in terms of
 Fourier transforms using
 convolution theorem

$$\begin{split} P_{L}(L_{sh};\ell)d\ell &\propto \ell^{2}d\ell \,\int_{M_{min}}^{M_{max}} dM \,\frac{d^{2}N}{dMdV} \,\exp\!\!\left[-\frac{\left(\ln L_{sh} - \left\langle \ln L_{sh} \right\rangle\right)^{2}}{2\sigma^{2}}\right] \\ P_{1}(F) &\propto \theta(F_{max} - F) \int_{0}^{\ell_{max}} d\ell \int dL_{sh} \,P_{L}(L_{sh};\ell) \,\delta\!\left(F - \frac{L_{sh}}{4\pi\ell^{2}}\right) \end{split}$$

$$\begin{split} P_{sh}(F) = &\sum_{k} e^{-\mu} \frac{\mu^{\kappa}}{k!} \\ & \times \left(\int dF_{1} \dots \int dF_{k} P_{1}(F_{1}) \times \dots \times P_{1}(F_{k}) \times \delta(F - F_{1} - \dots - F_{k}) \right) \end{split}$$

degeneracy

- single subhalo flux distribution characterized by high flux slope
- set by n, β , M_s ρ_s relation
- leads to degeneracy among parameters
- for fixed single subhalo flux distribution, then adjust M_{min} to keep average number of subhalos fixed
- leads to a degenerate choice flux distribution
- but need large parameter changes to mask change in n

main features

- assume subhalo profile has two dimensionful parameters, ρ_s and r_s
 - NFW, but main results don't change for generalized NFW, Einasto, etc.
- only quantity with units of velocity is $(4\pi G_N \rho_s r_s^2)^{1/2}$
- dependence of effective J-factor on halo parameters determined by dimensional analysis
- overall scaling depends on profile form, but is degenerate with cross section
- but different subhalos have different parameters \rightarrow relative scaling
 - so one can potentially determine the velocity dependence from signals from an ensemble of subhalos