STERILE NEUTRINO DARK MATTER IN THE SUPER-WEAK MODEL

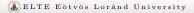
Károly Seller Department for Theoretical Physics

ELTE Eötvös Loránd University

TABLE OF CONTENTS

- 1. Introduction to the super-weak model
- 2. Dark matter production mechanisms
 - 2.1. Resonant freeze-out scenario
- 3. Experimental constraints
- 4. Conclusions

This talk is based on the article [arXiv:2104.11248] by S. Iwamoto, K. Seller, and Z. Trócsányi.



INTRODUCTION TO THE SUPER-WEAK MODEL

EXTENDING THE STANDARD MODEL

A possible way to solve a number of shortcomings of the SM is to extend the gauge group:

$$\begin{array}{lll} \mbox{Super-weak gauge group:} & \mbox{G}_{\mbox{SW}} = \underbrace{\mbox{SU}(3)_{\mbox{c}} \otimes \mbox{SU}(2)_{\mbox{L}} \otimes \mbox{U}(1)_y}_{\mbox{G}_{\mbox{SM}}} \otimes \mbox{U}(1)_z \end{array}$$

Why an extra U(1)?

• Phenomenologically the simplest choice \longrightarrow Avoid having many new parameters

What is the goal of the model?

- Simple model \rightarrow simultaneous explanation of multiple observations beyond the SM possible?
- See today's poster session:
 - [1288] Z. Trócsányi SWSM phenomenology
 - [1195] Z. Péli Vacuum stability in SWSM
 - [518] T. Kärkkäinen Neutrino physics in SWSM

SUPER-WEAK MODEL SPECTRUM AND CHARGES

We extend the spectrum of the Standard Model with

- $N_{1,2,3} \rightarrow 3$ right-handed sterile neutrinos,
- $Z' \rightarrow$ the massive gauge boson of $U(1)_z$,
- $\chi \rightarrow$ complex scalar SU(2)_L singlet.

The lightest sterile neutrino N_1 is the dark matter candidate.

Charge assignment for $U(1)_z$ has to be anomaly-free.

- The condition can be satisfied in many ways.
- The $U(1)_z$ charges are linear combinations of the hypercharges and B L numbers.
- Simple choice: right-handed neutrinos have the opposite charge to left-handed ones.

SUPER-WEAK MODEL INTERACTIONS

In the super-weak model only the neutral currents are modified. Rotation (θ_W, θ_Z) of gauge eigenstates to mass eigenstates: $(B_\mu, B'_\mu, W^3_\mu) \rightarrow (A_\mu, Z_\mu, Z'_\mu)$ $(g_{Z^0} = g_L / \cos \theta_W)$

• Covariant derivative:

$$\rightarrow \mathcal{D}_{\mu}^{neut.} \supset -i(\mathcal{Q}_{A}A_{\mu} + \mathcal{Q}_{Z}Z_{\mu} + \mathcal{Q}_{Z'}Z'_{\mu})$$

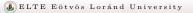
• Effective couplings:

$$\rightarrow \mathcal{Q}_{A} = (T_{3} + y)|e| \equiv \mathcal{Q}_{A}^{SM}$$

$$\rightarrow \mathcal{Q}_{Z} = \underbrace{(T_{3}\cos^{2}\theta_{W} - y\sin^{2}\theta_{W})g_{Z^{0}}}_{\mathcal{Q}_{Z}^{SM}} \cos\theta_{Z} - (z - \eta y)g_{z}\sin\theta_{Z}$$

$$\rightarrow \mathcal{Q}_{Z'} = (T_{3}\cos^{2}\theta_{W} - y\sin^{2}\theta_{W})g_{Z^{0}}\sin\theta_{Z} + (z - \eta y)g_{z}\cos\theta_{Z}$$

The Z–Z' mixing is small, and the weak neutral current is only modified at order $\mathcal{O}(g_z^2/g_{Z^0}^2)$.

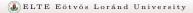


SUPER-WEAK MODEL PARAMETERS

- 1. Gauge coupling, g_z
 - In order to avoid SM precision constraints, $\left| O(g_z/g_{Z^0}) \ll 1 \right|$.
- 2. Vacuum expectation value of χ singlet, w
 - We will use the mass of Z' instead. It is assumed that $M_{Z'} \ll M_Z$.
- 3. Z-Z' mixing angle, θ_Z

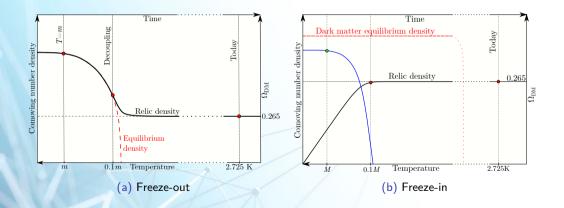
Given the above assumptions,
$$\tan(2\theta_Z) = rac{4\zeta_{\phi}g_z}{g_{Z^0}} + \mathcal{O}\left(rac{g_z^3}{g_{Z^0}^3}
ight) \ll 1.$$

- 4. $U(1)_y \otimes U(1)_z$ gauge mixing parameter, η
 - Its value can be determined from RGE, at relevant scales $0 \le \eta < 1$, but we use $\eta = 0$ for simplicity (no qualitative difference).
- 5. Neutrino masses, N_i
 - We assume N_1 to be light (MeV scale), while $M_{2,3} = \mathcal{O}(M_{Z^0})$.



DARK MATTER PRODUCTION

FREEZE-OUT AND FREEZE-IN



SUPER-WEAK DARK MATTER PRODUCTION

In the super-weak model the lightest sterile neutrino is the dark matter candidate.

Relevant particles: electrons, SM neutrinos, Z' bosons, and N_1 sterile neutrinos.

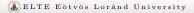
Vertex:
$$\Gamma^{\mu}_{Z'ff} = -ig_z \gamma^{\mu} \left[q_f \cos^2 \theta_{\mathsf{W}}(2-\eta) + (z_f - 2y_f) + \mathcal{O}(g_z^2/g_{Z^0}^2) \right]$$

•
$$\Gamma^{\mu}_{Z'\nu_i\nu_i} \simeq \Gamma^{\mu}_{Z'N_1N_1} \simeq -i\frac{g_z}{2}\gamma^{\mu}$$

• $\Gamma^{\mu}_{Z'ee} \simeq -ig_z\gamma^{\mu}\left[(\eta-2)\cos^2\theta_W + \frac{1}{2}\right]$

 N_1 production channels:

- 1. Scattering via Z' exchange $(f\bar{f} \rightarrow Z' \rightarrow N_1N_1) \longrightarrow \mathsf{FREEZE-OUT}$
- 2. Decays of Z' bosons $(Z' \rightarrow N_1 N_1) \longrightarrow \mathsf{FREEZE-IN}$



DARK MATTER PRODUCTION: FREEZE-OUT

FREEZE-OUT IN THE SUPER-WEAK MODEL: PROCESSES

We consider $M_1 = \mathcal{O}(10)$ MeV \longrightarrow decoupling happens at $T_{dec} = \mathcal{O}(1)$ MeV.

At this temperature range electrons and SM neutrinos are abundant, negligible amounts of heavier fermions.

$$N_{1}N_{1} \to f_{\rm SM}f_{\rm SM}: \quad \sigma_{\rm t} \propto g_{z}^{4}\sqrt{1 - \frac{4M_{1}^{2}}{s}} \frac{s}{(s - M_{Z'}^{2})^{2} + M_{Z'}^{2}\Gamma_{Z'}^{2}}$$

$$f_{\rm SM}$$

$$N_{I}$$

RESONANT AMPLIFICATION

In the freeze-out mechanism increasing the interaction rate decreases the relic density.

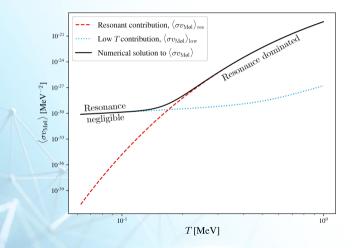
- But large couplings are ruled out by experiments!
- Need another way out: increase $\langle \sigma v_{M
 metal} \rangle$ by exploiting resonance $(2M_1 \lesssim M_{Z'})$

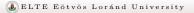
Resonance:
$$\langle \sigma v_{\mathsf{M} \not \mathsf{e} \mathsf{l}} \rangle = (...) \int_{4M_1^2}^{\infty} \mathsf{d} s \underbrace{\frac{(...)}{(s - M_{Z'}^2)^2 + M_{Z'}^2 \Gamma_{Z'}^2}}_{\text{strongly peaked around } s = M_{Z'}^2} K_1\left(\frac{\sqrt{s}}{T}\right)$$

- → Recall that $T_{dec} \approx 0.1 M_1$, then at the resonance $s = M_{Z'}^2$ the Bessel function is $K_1(10M_{Z'}/M_1)$
- → The Bessel function is exponentially small if its argument is large → need $M_{Z'} \approx 2M_1$, i.e., resonance.

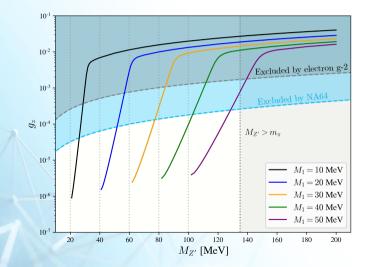
Resonant Amplification: Example

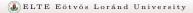
Example calculated within the super-weak model for $M_1 = 10$ MeV and $M_{Z'} = 30$ MeV.





FREEZE-OUT IN THE SUPER-WEAK MODEL





EXPERIMENTAL CONSTRAINTS

EXPERIMENTAL CONSTRAINTS

- 1. Anomalous magnetic moment of electron and muon
 - Z' couples to leptons and appears in the triangle graph modifying the magnetic moment.
 - Constraints on $(g_{\ell} 2)$ translate to upper bounds on the coupling as $g_z(M_{Z'})$.
- 2. NA64, search for missing energy events
 - Strict upper bounds on $g_z(M_{Z'})$ for any U(1) extension (dark photons).
- 3. Supernova constraints based on SN1987A
 - Constraints are based on comparing observed and calculated neutrino fluxes.
- 4. Big Bang Nucleosynthesis provides constraints on new particles
 - New particles should have negligible effects during BBN.
 - Meson production can be dangerous close to BBN.
- 5. Further constraints are due to CMB, solar cooling, beam dump experiments, etc.

2 - NA64

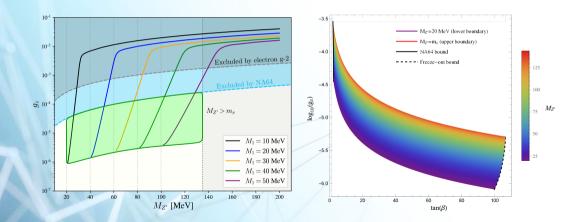
NA64 experiment constists of an electron beam fired at a fix target of material with atomic number $Z \longrightarrow Bremsstrahlung$ process may produce a "dark photon".

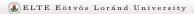
$$e + Z \rightarrow e + Z + A', \quad A' \rightarrow (invisibles)$$

Look for missing energy events, i.e. when the dark photon decayed to invisible final states (sterile particles or SM neutrinos)

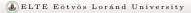
Non-observation of missing energy events \longrightarrow constraints on kinetic mixing \iff Must be translated to the super-weak model!

(Dark photon model) $e\epsilon = |\tilde{g}_z| \sqrt{\mathcal{B}_{inv.}^{Z'}}$ (Super-weak model)



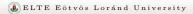


CONCLUSIONS



CONCLUSIONS

- The super-weak extension can provide a valid dark matter candidate, the lightest sterile neutrino
- Current experimental bounds allow for both freeze-in and freeze-out scenarios
- Future experiments will probe the parameter space of the freeze-out case
- Freeze-in is difficult to completely rule out due to the numerous sensitive parameters and feeble couplings



BACKUP SLIDES

SUPER-WEAK MODEL SPECTRUM AND CHARGES

			PARTICLE	SU(3)c	$SU(2)_L$	$U(1)_y$	$U(1)_z$
1		KS	Q_{L}	3	2	1/6	1/6
	SN	QUARKS	U_{R}	3	1	2/3	7/6
	IOI		D_{R}	3	1	-1/3	-5/6
	Fermions	Leptons	L_{L}	1	2	-1/2	-1/2
	Гц		N _R	1	1	0	1/2
		LE	eR	1	1	-1	-3/2
	S						
	SCALARS	1	ϕ	1	2	1/2	1
	CAI		X	1	1	0	-1
	0)	No					

MIXING OF U(1) GAUGE SYMMETRIES

There are different ways to account for the mixing.

1 Kinetic mixing: $\mathcal{L}_{km} = -\frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu}$ term is allowed by gauge symmetry. 2 Mixing in the couplings: $\mathcal{D}^{U(1)}_{\mu} = -i \underbrace{(y \ z)}_{\mu} \mathbf{g} \begin{pmatrix} B_{\mu} \\ B'_{\mu} \end{pmatrix}$ U(1) charges With non-diagonal coupling matrix, $\mathbf{g} = \begin{pmatrix} g_y & -\eta g_z \\ 0 & g_z \end{pmatrix} \times (\text{Unphysical rotation}).$ It is convenient to define the effective $U(1)_z$ charge $\zeta = z - \eta y$: $\mathcal{D}^{U(1)}_{\mu} = -i \begin{pmatrix} yg_y & \zeta g_z \end{pmatrix} \times (\text{Unphysical rotation}) \times \begin{pmatrix} B_{\mu} \\ B' \end{pmatrix}$

SUPER-WEAK MODEL SYMMETRY-BREAKING PATTERN

The SU(2)_L \otimes U(1)_y \otimes U(1)_z gauge symmetry is broken by the non-zero vacuum expectation value of the scalars,

Spontaneous symmetry breaking: $SU(2)_L \otimes U(1)_v \otimes U(1)_z \rightarrow U(1)_{em}$.

As usual the gauge bosons obtain masses through the Higgs mechanism.

Basis rotation has 3 free parameters: θ_W , θ_Z , and ϵ' . However, only 2 are physical: ϵ' is cancelled by the mixing in the coupling matrix.

SUPER-WEAK MODEL GAUGE SECTOR

After spontaneous symmetry breaking, the gauge bosons acquire masses. $(g_{Z^0} = g_L/\cos\theta_W)$

$$M_{Z} = \frac{g_{Z^{0}}v}{2}\sqrt{1 + \frac{2\zeta_{\phi}g_{z}}{g_{Z^{0}}}\tan\theta_{z}} = \underbrace{\frac{g_{Z^{0}}v}{2}}_{M_{Z}^{(SM)}} + \mathcal{O}\left(\frac{g_{z}^{2}}{g_{Z^{0}}^{2}}\right)$$
$$M_{Z'} = \frac{g_{z}w}{\sqrt{1 + \frac{2\zeta_{\phi}g_{z}}{g_{Z^{0}}}\tan\theta_{z}}} = g_{z}w - \mathcal{O}\left(\frac{g_{z}^{2}}{g_{Z^{0}}^{2}}\right)$$
$$M_{W} = \frac{g_{L}v}{2} \qquad \longleftarrow \qquad (\text{Unchanged!})$$

Note: $M_{Z'} \ll M_Z$ if $w \gtrsim v$ and $g_z \ll g_{Z^0} \longrightarrow$ "super-weak" coupling

FREEZE-IN IN THE SUPER-WEAK MODEL: PROCESSES

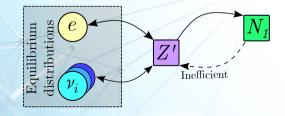
Main processes to consider are decays.

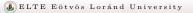
• Only Z' has a vertex with N_1 , thus $Z' \rightarrow N_1 N_1$ is the only process creating DM

We have no reason to assume anything special about the initial abundance of Z':

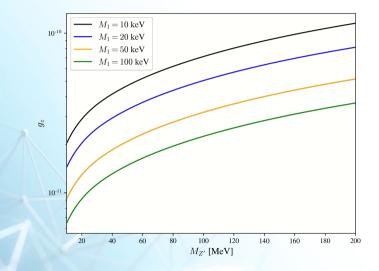
Simplest choice: $\mathcal{Y}_{Z'}(T_0) = \mathcal{Y}_1(T_0) = 0$, where $T_0 \gg M$.

We have to solve for both Z' and N_1 abundances as both will be out of equilibrium.





FREEZE-IN IN THE SUPER-WEAK MODEL



🚯 ELTE Eötvös Loránd University

1 - Anomalous magnetic moment

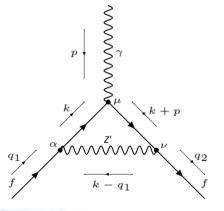
The coupling strength between Z' and the fermion:

$$\tilde{\mathbf{g}}_{\mathbf{z}} = \mathbf{g}_{\mathbf{z}} \left[(\eta - 2) \cos^2 \theta_{\mathsf{W}} + \frac{1}{2} \right]$$

 $U(1)_z$ contribution to the magnetic moment:

$$\begin{split} \Delta a_f^{(\text{th.})} &= \frac{\tilde{g}_z^2}{8\pi^2} \int_0^1 dx \ \frac{2x(1-x)^2}{(1-x)^2 + \rho x} \,, \\ \text{where} \ \rho &= \frac{M_{Z'}^2}{m_c^2} \end{split}$$

For a given $M_{Z'}$ find g_z^{max} for which $\Delta a_f^{(\text{th.})} = \Delta a_f^{(\text{exp.})}$.



3 - Supernova constraints

Supernova cooling: SN1987A measurement consistent with only neutrinos as cooling mechanism

Constraint \longrightarrow energy loss due to invisible channels cannot exceed that of the neutrino flux

Z' Luminosity:
$$L_{Z'} = \int_0^{R_1} d^3r \int \frac{d^3k}{(2\pi)^3} \omega_k \Gamma_{\text{prod}}(\omega_k, r) \underbrace{\exp\left(-\int_r^{R_2} dr' \Gamma_{\text{abs}}(\omega_k, r')\right)}_{\text{opacity}}$$

- For small couplings opacity is negligible $(\exp(-g_z^2) \approx 1)$ and the luminosity is proportional to the production rate, i.e. $L_{Z'} \propto g_z^2$
- For large couplings opacity dominates over production and the luminosity is exponentially decreasing, i.e. $L_{Z'} \propto \exp(-g_z^2)$



Experiments confirm that the standard model describes BBN very well (with the exception of the Li problem)

- \longrightarrow New physics cannot have large effects around BBN!
- a.) Effective degrees of freedom (effective number of neutrinos) should not be drastically altered
 - For freeze-out the change is negligible
 - For freeze-in the change is $\Delta N_{\rm eff} \sim 0.1-0.01$ depending on the ratio $M_{Z'}/M_1$ which is below current experimental bounds

b.) Production of pions is dangerous due to pion-enhanced proton-neutron conversion

- Simple solution: exclude $M_{Z'} > m_{\pi}$
- Z' lifetime constraints are present even below the pion mass, however they are negligible

5) - Other constraints

- γ ray production during and after supernova explosions
- Solar cooling can constrain models with very light particles (useful to constrain models with e.g. axions)
- Beam dump experiments can directly look for missing energy signatures
- The cosmic microwave background is very well understood and should not be disturbed by new physics (constraints on lifetimes of new particles, late-time ionisation)
- Simulations of structure formation and galaxy dynamics
- etc.