MADMAX-Toward a dielectric

Novel detector for post-inflationary axion dark matter

Chang Lee on behalf of the MADMAX collaboration, July 8th, 2022, ICHEP Bologna, Italy

Motivation **QCD** axion **DM**

- PQ symmetry to solve the strong CP problem
 - Spontaneous symmetry breaking @ f_A : axion
- well-motivated wave CDM candidate
 - Non-thermal: cold
 - Small interaction with SM particles. $\mathscr{L} = -\frac{1}{f} J^{\mu} \partial_{\mu} \phi, \quad f_A \gg v_{\text{EW}}$
 - Small m_a has a long lifetime.

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.symmetrymagazine.org%2Farticle%2Fthe-other-dark-mattercandidate&psig=AOvVaw0ANqCII0ryFlaJKtcEvgnS&ust=1643403924692000&source=images&cd=vfe&ved=0CAsQjRxqFwoT CODh O3q0vUCFQAAAAAdAAAAABA0

Motivation

Post-inflationary axion DM mass

 θ patches of Universe @ f_A

 Pre-inflationary scenarios allows much wider m_a.

- Post-inflationary production prefers
 m_a: 40 180 μeV.
 Buschmann *et al.*, Nat. Commun. 2022
- current Universe?

3/22

DM axion detection status

Principle

Principle Axion-induced E-field

axion field a

6/22

 ω_a

Principle Axion-induced E-field

 ω_a

Principle **Axion-induced E-field**

Traveling wave from dielectrics

- At the **boundaries**, different ε produce different E^{α} , and traveling waves are emitted.
- Signature: mono-energetic peak above background.
- Problem: signal is too small. power $\boldsymbol{\mathcal{E}}$ $\sim 10^{-13}$ [V/m/T]

Dielectric haloscope

- Solution: constructive interference of signal from multiple boundaries
- Scale-up on transverse dimensions, sensitive to the QCD-axion
- Tuning by moving disks
 - Antenna couples only to the axion mode (ideally)

Verification of concept

- A small & simple dielectric haloscope
 - "Closed": conducting boundary
 - Understand the detector & its noise
 - First Axionic Divi searching
- Measured reflectivity agrees with the simulation

Hidden photon search @ MPP

- Hidden photon to microwave conversion w/o B field.
- 32 days, 200K effective T_{sys}

Hidden photon search @ MPP

- Hidden photon to microwave conversion w/o B field.
- 32 days, 200K effective T_{sys}

20

10

Search region

0

center frequency difference [MHz]

-10

-4

-20

 \sim

ALP search from CERN's Morpurgo magnet

- MPP group traveled to CERN to use Morpurgo magnet for ALP search! 10 hrs @ 1.6T, No excess power found.
- Planning upgrade with a 4K system.

ALP search from CERN's Morpurgo magnet

- MPP group traveled to CERN to use Morpurgo magnet for ALP search! 10 hrs @ 1.6T, No excess power found.
- Planning upgrade with a 4K system.

MADMAX prototype

- Mechanical and rf feasibility test
- DFG funded!

To be commissioned at

Operation in Morpurgo until 2025 during the beam SPS shutdown periods

Mechanical feasibility R&D Milestones achieved!

- Can we operate the dielectric haloscope in high B, cryogenic temperature?
- Project200 (φ200mm disks) successfully tested at CERN's cryolab and Morpurgo
- Piezo-motor operated inside the 5T ALPS II

Full MADMAX Magnet

Conductor (NbTi in Cu jacket) quench test successful!

20/22

Projected sensitivity

RNTHAACHEN UNIVERSITY

Max-Planck-Institut für Radioastronomie

MAX-PLANCK-INSTITUT FÜR PHYSIK

Summary & Conclusion

- Axion is a well-motivated DM candidate. Postinflationary scenarios prefer $m_a > 40 \ \mu eV$.
- Dielectric haloscope is a promising concept. Intense activities to validate the concept using the closed booster and prototype.
- Piezo motor and P200 successfully operated in high B-field and cryogenic temperature.
- First HP and ALP DM search using a small setup. The analysis is ongoing.

"Portal to the dark sector" D. Strom

