DE LA RECHERCHE À L'INDUSTRIE

Searches for dark matter with the ATLAS detector

ICHEP 2022 @ Bologna (6-13 July)

www.cea.fr

Matthias Saimpert (IRFU) on behalf of the collaboration

Thursday 07 July 2022

MODELS FOR DARK MATTER

all ATLAS DM results available on the ATLAS EXOTIC public page

- Cosmological evidence for dark matter (DM), but no experimental hints on its nature
- Searching for weakly-interating massive particles (WIMP) w/ minimal assumptions is one of the main approaches pursued w/ ATLAS at the LHC → overview in this talk

DE LA RECHERCHE À L'INDUSTRIE

WIMP HUNTING AT COLLIDERS

DE LA RECHERCHE À L'INDUSTRIE

WIMP HUNTING AT COLLIDERS

WIMP HUNTING AT COLLIDERS

 $\begin{array}{l} \hline \quad \text{WIMP abundance set by thermal freeze-out} \\ \hline \quad \text{weak interaction } (<\sigma v>\sim 10^{-26}~\mathrm{cm^3 s^{-1}}) \\ M_{\chi}\sim 1\text{-}1000~\mathrm{GeV}\rightarrow \Omega_c h^2\sim 0.12 \end{array}$

- $X = jet, \gamma, Z, W, ... \rightarrow visible recoil$
- missing momentum in transverse plane (E_T^{miss})

THE ATLAS DETECTOR AT THE LHC

ATLAS detector overview

Particle identification

- Recording of LHC proton-proton collisions at $\sqrt{s} = 13$ TeV
- Very large dataset collected during Run 2 (2015-2018)
 - = 139 fb⁻¹ available \rightarrow 7.7M Higgs, 275M top quarks, 2800M Z bosons, ...
- Multi-purpose, high efficiency/acceptance detector

- Recording of LHC proton-proton collisions at \sqrt{s} = 13 TeV
- Very large dataset collected during Run 2 (2015-2018)
 - = 139 fb⁻¹ available \rightarrow 7.7M Higgs, 275M top quarks, 2800M Z bosons, ...
- Multi-purpose, high efficiency/acceptance detector
 - excellent online/offline reconstruction performance

MONO-JET SEARCH ANALYSIS

Phys. Rev. D 103 (2021) 112006 - 'precision search'

- Signal region (SR) selection
 - $= E_T^{miss} > 200 \text{ GeV} \text{trigger}$
 - up to 4 jets well separated from E^{miss}_T
 - leading jet pT > 150 GeV

SR postfit : no excess

DE LA RECHERCHE À L'INDUSTR

MONO-JET SEARCH ANALYSIS

Phys. Rev. D 103 (2021) 112006 - 'precision search'

- Signal region (SR) selection
 - $E_T^{miss} > 200 \text{ GeV} \text{trigger}$
 - up to 4 jets well separated from E^{miss}
 - leading jet pT > 150 GeV

SR postfit : no excess

Background : $Z(\rightarrow \nu \nu)$, $W(\rightarrow \ell \nu)$ + jets

- constrained in 1/2-lepton regions
- state-of-the-art W/Z+jets predictions EPJC 77, 829 (2017)
- total background uncertainty : 2-4%, unc. in QCD/EW corrections significant

ex : $Z \rightarrow \mu \mu$ CR postfit

ICHEP 2022 @ Bologna (6-13 July) | 07 July 2022 | PAGE 5/14

MONO-JET SEARCH RESULTS

Phys. Rev. D 103 (2021) 112006 - 'precision search' ; dark sector reinterpretation : ATL-PHYS-PUB-2021-020

Various interpretations :

- DM mediated by axial vector Z_A incl. comparison w/ direct detection
- squark pair production w/ $ilde{q}
 ightarrow q$ + $ilde{\chi}^0$
- dark-energy scalar fields + other dark sector JHEP 05 (2019) 142

MONO-JET SEARCH RESULTS

Phys. Rev. D 103 (2021) 112006 - 'precision search' ; dark sector reinterpretation : ATL-PHYS-PUB-2021-020

Various interpretations :

- DM mediated by axial vector Z_A incl. comparison w/ direct detection
- = squark pair production w/ $ilde{q} o q$ + $ilde{\chi}^0$
- dark-energy scalar fields + other dark sector JHEP 05 (2019) 142

axial vector mediator interpretation more ATLAS mono-X results : mono-γ, mono-V, mono-Z

ICHEP 2022 @ Bologna (6-13 July) | 07 July 2022 | PAGE 6/14

MONO-JET SEARCH RESULTS

Phys. Rev. D 103 (2021) 112006 - 'precision search' ; dark sector reinterpretation : ATL-PHYS-PUB-2021-020

Various interpretations :

- DM mediated by axial vector Z_A incl. comparison w/ direct detection
- squark pair production w/ $ilde{q} o q$ + $ilde{\chi}^0$
- dark-energy scalar fields + other dark sector JHEP 05 (2019) 142

axial vector mediator interpretation more ATLAS mono-X results : mono-γ, mono-V, mono-Z

(model-dependent) comparison w/ direct detection vector mediator and comparison w/ spin-independent also available

ICHEP 2022 @ Bologna (6-13 July) | 07 July 2022 | PAGE 6/14

ATL-PHYS-PUB-2022-036

- direct search for mediator particle in dijet mass spectrum
- look for bump over smoothly falling background (fit)
- sensitivity for m < 2 TeV limited by trigger threshold

INTERPLAY W/ RESONANT SEARCH

ATL-PHYS-PUB-2022-036

- direct search for mediator particle in dijet mass spectrum
- look for bump over smoothly falling background (fit)
- sensitivity for *m* < 2 TeV limited by trigger threshold

High complementarity with mono-X searches

ZA w/ large coupling to quarks

 Z_V w/ small coupling to quarks and leptons

ICHEP 2022 @ Bologna (6-13 July) | 07 July 2022 | PAGE 7/14

- spin-0 mediator under minimal flavour violation hypothesis → Yukawa-like couplings
- research program covers $b\bar{b} + E_T^{miss}$ and $t\bar{t} + E_T^{miss}$ incl. 0, 1, 2 lepton decays
- complementary sensitivity with $t\bar{t}/b\bar{b}$ resonance search

- spin-0 mediator under minimal flavour violation hypothesis → Yukawa-like couplings
- research program covers $b\bar{b} + E_T^{miss}$ and $t\bar{t} + E_T^{miss}$ incl. 0, 1, 2 lepton decays
- complementary sensitivity with $t\bar{t}/b\bar{b}$ resonance search

recent extension of this program to $tq/tW + E_T^{miss}$ presented in **next talk**

- spin-0 mediator under minimal flavour violation hypothesis → Yukawa-like couplings
- research program covers $b\bar{b} + E_T^{miss}$ and $t\bar{t} + E_T^{miss}$ incl. 0, 1, 2 lepton decays
- complementary sensitivity with $t\bar{t}/b\bar{b}$ resonance search
- today focus on recent improvements in tt + E_T^{miss} analysis sensitivity

- extension to lower E_T^{miss} phase space (0-lepton)
- statistical combination

- spin-0 mediator under minimal flavour violation hypothesis → Yukawa-like couplings
- research program covers $b\bar{b} + E_T^{miss}$ and $t\bar{t} + E_T^{miss}$ incl. 0, 1, 2 lepton decays
- complementary sensitivity with $t\bar{t}/b\bar{b}$ resonance search
- today focus on recent improvements in tt + E_T^{miss} analysis sensitivity

- extension to lower E_T^{miss} phase space (0-lepton)
- statistical combination

ICHEP 2022 @ Bologna (6-13 July) | 07 July 2022 | PAGE 8/14

Eur. Phys. J. C 81 (2021) 1087, ATLAS-CONF-2022-007

 initial analysis : E_T^{miss} > 250 GeV – trigger, extended to 160 < E_T^{miss} < 250 GeV w/ bjet trigger

control regions in 0-lepton analysis

Cea

$t\bar{t} + E_T^{miss}$ 0-LEPTON CHANNEL

Eur. Phys. J. C 81 (2021) 1087, ATLAS-CONF-2022-007

control regions in 0-lepton analysis

- initial analysis : E_T^{miss} > 250 GeV trigger, extended to 160 < E_T^{miss} < 250 GeV w/ bjet trigger
- Main background : top with a missed lepton

DE LA RECHERCHE À C'INDUSTRIE

Eur. Phys. J. C 81 (2021) 1087, ATLAS-CONF-2022-007

control regions in 0-lepton analysis

- initial analysis : $E_T^{miss} > 250 \text{ GeV} \text{trigger}$, extended to $160 < E_T^{miss} < 250 \text{ GeV}$ w/ bjet trigger
- Main background : top with a missed lepton

ICHEP 2022 @ Bologna (6-13 July) | 07 July 2022 | PAGE 9/14

DE LA RECHERCHE À CINDUSTRIE

cea

Eur. Phys. J. C 81 (2021) 1087, ATLAS-CONF-2022-007

control regions in 0-lepton analysis

initial analysis : $E_T^{miss} > 250 \text{ GeV} - \text{trigger}$, extended to $160 < E_T^{miss} < 250 \text{ GeV}$ w/ bjet trigger

Main background : top with a missed lepton

challenging residual $t\bar{t} + b$ at low E_{τ}^{miss}

ICHEP 2022 @ Bologna (6-13 July) | 07 July 2022 | PAGE 9/14

DE LA RECHERCHE À UNDUSTRI

ATLAS-CONF-2022-007. ATL-PHYS-PUB-2022-036

- 2-lepton dominates, 0-lepton extension reaches 1-lepton sensitivity at low m_o
- data compatible w/ predictions within 2σ

DE LA RECHERCHE À L'INDUSTRI

ATLAS-CONF-2022-007. ATL-PHYS-PUB-2022-036

- 2-lepton dominates, 0-lepton extension reaches 1-lepton sensitivity at low m_o
- data compatible w/ predictions within 2σ
- *tt* + *E*^{*miss*} analyses combined exclude
 - $m_{\phi} < 370 \text{ GeV}$ for g = 1
 - g > 0.17 (0.14 exp.) at m_{ϕ} = 10 GeV

results for pseudo-scalar also available

DE LA RECHERCHE À L'INDUSTRI

ATLAS-CONF-2022-007. ATL-PHYS-PUB-2022-036

- 2-lepton dominates, 0-lepton extension reaches 1-lepton sensitivity at low m_o
- data compatible w/ predictions within 2σ
- tt
 t
 t
 t
 +
 E_T^{miss} analyses combined exclude
 - $m_{\phi} < 370 \text{ GeV}$ for g = 1
 - g > 0.17 (0.14 exp.) at m_{ϕ} = 10 GeV
 - results for pseudo-scalar also available

- Particular case of scalar mediator → SM Higgs boson
- Assuming SM Higgs production (incl. *HVV* couplings) and searching for $H \rightarrow inv$.
- Leading channels : VBF + E_T^{miss} , $Z(\rightarrow \ell \ell) + E_T^{miss}$, $t\bar{t} + E_T^{miss}$
- **VBF** : ≥ 2 jets with large $\Delta \eta$ and m_{jj} background : $Z \rightarrow \nu\nu$, $W \rightarrow l\nu$, multijet, statistical/systematic unc. comparable, total ~ 5%

- Assuming SM Higgs production (incl. HVV couplings) and searching for $H \rightarrow$ inv.
- Leading channels : VBF + E_T^{miss} , $Z(\rightarrow \ell\ell) + E_T^{miss}$, $t\bar{t} + E_T^{miss}$
- **VBF** : ≥ 2 jets with large $\Delta \eta$ and m_{jj} background : $Z \rightarrow \nu\nu$, $W \rightarrow l\nu$, multijet, statistical/systematic unc. comparable, total ~ 5%
- $Z(\rightarrow \ell\ell)$: Z candidate recoiling $E_T^{miss} > 90$ GeV background : ZZ/WZ with neutrinos ZZ modeling and jet/ E_T^{miss} calibration, total ~ 9%

 $Z(\rightarrow \ell \ell) + E_T^{miss}$ SR : no excess

other interpretations also included, see publications

ICHEP 2022 @ Bologna (6-13 July) | 07 July 2022 | PAGE 11/14

 $t\bar{t}H(\rightarrow inv.)$

VBF H(\rightarrow inv.)

Observed	Expected	$+1\sigma$	-1σ	$+2\sigma$	-2σ
0.145	0.103	0.144	0.075	0.196	0.055

best fit $B_{H \rightarrow inv.}$ = 0.053 \pm 0.052

VBF+ γ **H**(\rightarrow **inv.**) expected (observed) : $B_{H \rightarrow inv} > 0.37 (0.34)$

ZH(\rightarrow inv.) expected (observed) : $B_{H\rightarrow inv.} > 0.19$ (0.19) best fit $B_{H\rightarrow inv.} = 0.003 \pm 0.09$

- Now sensitive to $BR(H \rightarrow inv.) > 10\%$; no hint for invisible Higgs decays so far
- VBF and ZH channels stronger than ttH but more systematically-dominated + dependent on SM-like HVV coupling assumption

 $t\bar{t}H(\rightarrow inv.)$

VBF H(\rightarrow inv.)

Observed	Expected	$+1\sigma$	-1σ	$+2\sigma$	-2σ
0.145	0.103	0.144	0.075	0.196	0.055

best fit $B_{H \rightarrow inv.}$ = 0.053 \pm 0.052

VBF+ γ **H**(\rightarrow **inv.**) expected (observed) : $B_{H \rightarrow inv} > 0.37 (0.34)$

ZH(\rightarrow inv.) expected (observed) : $B_{H\rightarrow inv.} > 0.19$ (0.19) best fit $B_{H\rightarrow inv.} = 0.003 \pm 0.09$

- Now sensitive to $BR(H \rightarrow inv.) > 10\%$; no hint for invisible Higgs decays so far
- VBF and ZH channels stronger than ttH but more systematically-dominated + dependent on SM-like HVV coupling assumption
- Partial Run 1 + Run 2 combination available in ATLAS-CONF-2020-052 → full combination in progress (incl. e.g. mono-jet)

ATL-PHYS-PUB-2022-036

- 2HDM+a model : pseudo-scalar mediator UV-complete extension, CERN-LPCC-2018-02
 - new signatures : mono-H, $Wt + E_T^{miss} \rightarrow$ see next talk
- Dark Higgs model JHEP 04 (2017) 143
 - new signatures : $VV + E_T^{miss}$, ...
- Strongly-interacting dark sectors JHEP 11 (2017) 196
 - new ATLAS result BSM session, Friday at 18 :00 ATLAS-CONF-2022-038

2HDM+a Dark Higgs summary plot (new) $\tan \beta = 1.0, \sin \theta = 0.35, m_A = m_H = m_{H^+}$ July 2022 [GeV] ATI AS Preliminary F/m > 20% E^{miss}+Z(qq), 36.1 fb⁻¹ [200] [©] ¹ ² . JHEP 10 (2018) 180 TeV 36.1 39 fb Erriss + VV(qqqq), 139 fb⁻¹ ATLAS Preliminary 1800 2HDM+a, Dirac DM Limits at 95% CL 13 TeV, 79.8 - 139 fb= PRL 126 (2021) 121802 Limits at 95% CL E^{miss}+h(bb), 139 fb⁻¹ m, = 10 GeV, g = 1 -Obranuad IHEP 11 (2021) 209 Observed 1600 E^{miss} + WW(d0(v), 139 fb⁻¹ $\sin\theta = 0.35$, $\tan\hat{\beta} =$ cc - Expected ----- Expected Eriss+Z(II), 139 fb⁻¹ ATLAS-CONF-2022-029 m. = m. = m. 1400 PLB 829 (2022) 13706 Dark Higgs model 300 E^{miss} + bb, 79.8 fb⁻¹ JHEP 1704 (2017) 143 E^{miss}+Wt. 139 fb⁻ 1200 ATL-PHYS-PUB-2019-032 EPJC 81 (2021) 860 a.=0.25. a.=1 sine=0.01, m,=200 GeV Thermal Relic Density 1000 H¹tb, 139 fb⁻¹ O.b²>0.12 m. * m. + m. JHEP 06 (2021) 145 200 800 h(inv) 139 fb⁻¹ ATLAS-CONF-2020-052 600 100 E^{miss}+h(γγ), 139 fb⁻¹ JHEP 10 (2021) 13 400 -Combination 1000 1500 2000 2500 3000 E_____+h(bb), E____+Z(1) 100 200 300 400 500 600 700 800 m₂ [GeV] m, [GeV] ICHEP 2022 @ Bologna (6-13 July) | 07 July 2022 | PAGE 13/14

- WIMPs are actively searched for in ATLAS data
 - simplified single mediator models → mono-X searches
 - Higgs portal models

- \rightarrow H decay to invisible searches
- more complete models
- \rightarrow 2HDM+a, dark Higgs, ...
- Wide range of parameter space explored, no hint so far
 - many signatures explored thanks to excellent detector performance
 - sensitivity more model-dependent but complementary to direct detection

- WIMPs are actively searched for in ATLAS data
 - simplified single mediator models → mono-X searches
 - Higgs portal models
 - more complete models

- \rightarrow H decay to invisible searches
- \rightarrow 2HDM+a, dark Higgs, ...
- Wide range of parameter space explored, no hint so far
 - many signatures explored thanks to excellent detector performance
 - sensitivity more model-dependent but complementary to direct detection
- Other ATLAS talks on related topics :
 - mono-top (next)
 - search for SUSY electroweak (BSM session, today, 18 :30)
 - boosted resonances in hadronic final states (BSM session, Fri., 18:00)
 - new phenomena in hadronic finals states (BSM session, Sat., 9:45)
 - ...

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Paris-Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 60 00 | F. XX

CEA Paris-Saclay IRFU/DPhP Groupe ATLAS

Établissement public à caractère industriel et commercial RCS Paris B 775 685 019