

The Higgs Boson as a tool to search for dark matter at CMS

Raman Khurana on behalf of CMS Collaboration

National Taiwan University, Taiwan 7th July 2022

ICHEP 2022, Bologna, Italy.

Evidence for Dark Matter

ICHEP 2022, Bologna, Italy

Portals to Dark Sector

The new mediator governs the non-gravitational interactions between dark matter and ordinary matter

List of DM searches

ICHEP 2022, Bologna, Italy

Outline

 Focus here is on the scenarios where Higgs boson is involved in probing the dark sector.

 T_{T}^{miss} : missing transverse momentum; negative vector sum of all the visible particles in the detector.

Performance of p_T^{miss}

- All DM search analysis use p_T^{miss} as the main observable.
- p_T^{miss} reconstruction highly affected by instrumental effects.
- A set of noise filters are used to reject the events with mis-measured p_T^{miss} from various instrumental and reconstruction effects.
- Filters clean up the tails of p_T^{miss} significantly at a cost of <1% of signal.

mono-Higgs

- After the discovery of the Higgs boson (125 GeV) it is possible to probe the DM using this new handle.
- New massive particle mediates the Higgs-DM interaction.
- Search performed in 5 decay channels and statistically combined.
 - $b\bar{b}, \gamma\gamma, WW, ZZ$ and $\tau\tau$
- Results interpreted using three simplified models.
 - Z'-2HDM
 - Baryonic-Z'
 - 2HDM+a

mono-Higgs

			Decay channel	Final state or category
11, 1	H→bb	most	$h \rightarrow bb$	AK8 jet (Z'-2HDM) CA15 jet (Baryonic Z')
h->bb fat jet		sensitive	$ m h ightarrow \gamma\gamma$	$p_{\rm T}^{\rm miss} \in 50-130{\rm GeV}$
	2HDM+a	CA15 jets		$p_{\rm T}^{\rm mass} > 130 {\rm GeV}$
	Baryonic-Z'	CA15 jets	h ightarrow au au	$\mu \tau_{\rm h}$ $e \tau_{\rm h}$
			$\mathbf{h} ightarrow WW$	evµv
1 - /		ANO JEIS	$h \rightarrow ZZ$	4e 4μ
/				2e2µ

Final states orthogonal to each other

ICHEP 2022, Bologna, Italy

DM

DM

Dark Higgs boson (WW) + MET

 Dark Higgs boson model: Dark Matter particle acquire mass through their interaction with a dark Higgs boson (paper).

- WW decay mode dominates for m_s>160 GeV.
- $s \rightarrow WW$ search performed for the first time in fully leptonic final state.
- Major backgrounds:
 - Non-prompt leptons: estimated using data.
 - WW, Top and $Z \rightarrow \tau \tau$ rate estimated from dedicated control regions,

Dark Higgs boson (WW) + MET

3-dimensional fit performed using ΔR , m_{ll} and m_T

No significant excess of events observed.
 most stringent limit for mx=100 GeV in dark Higgs framework.

Higgs → invisible

Model New trigger strategy: using jet properties from VBF production in addition to p_T^{miss} trigger.

Solution Using V+jets and $\gamma + jets$ CRs to constrain major backgrounds (Z(vv)+jet and W(lv)+jets).

Higgs → invisible

- Combination of Run 1 and Run2
 - 95% CL upper limit on the in BR (H→invisible) < 0.18 (0.10)

Constraints are compatible with SM H \rightarrow invisible branching ratio.

Constraints on spin independent DM-neucleon cross-section

Dark photon in VBF Higgs

Search for dark photon in VBF Higgs boson events.

Year	Triggering object
2016	VBF photon
2017/2019	MET
2017/2010	Photon

h(125 GeV) is of particular interest but higher masses are also considered.

Dedicated CRs for major background: **W+jets**, **Wγ**, **Zγ**, **γ+jets**

Simultaneous fit of SR and CRs

CMS Experiment at LHC, CERN

Dark photon in VBF Higgs

Raman Khurana

Dark photon in VBF Higgs

Summary

- Showcasing the selected dark matter searches using Higgs boson.
 - Higgs boson to Invisible and MET based signatures are key to DM search at CMS.
 - A big phase space has been excluded using Run 2 dataset for the Dark Higgs model.
- Results for Dark Higgs WW (semi-leptonic) and mono-Higgs bb using the Run-2 dataset are expected to be public soon
- For more details

Backup

mono-Higgs: Interpretations

- There are three simplified models available which predicts the mono-H signal.
 - Z'-2HDM:
 - Heavy vector mediator is produced resonantly and decays into a SM-like Higgs boson and an intermediate pseudoscalar particle A.
 - Baryonic-Z':
 - A "baryonic-Higgs" boson mixes with the SM Higgs boson. A vector mediator Z' is produced in s-channel and decays into a pair of DM particles after radiating a Higgs boson.
 - 2HDM+a:
 - Two-Higgs-doublet model extended by an additional pseudoscaler *a* which mixes with the scalar and pseudoscalar partner of the new Higgs boson and decays into a pair of DM particles.

Major backgrounds

• There are three SM processes which can mimic the signal like detector signature.

mono-Higgs Combination

- The search is extended by a statistical combination of 5 analyses.
 - bb, $\gamma\gamma$, $\tau\tau$,WW and ZZ
- The analyses the required to be orthogonal to each other to avoid double counting.

Object	$\textbf{h} \rightarrow \textbf{b}\textbf{b}$	$ m h ightarrow \gamma \gamma$	$h\to\tau\tau$	$h \rightarrow WW$	$h \rightarrow ZZ$
Electron	=0		=0	=0	=0
Muon	=0		=0	=0	=0
τ lepton	=0		_	=0	—
Photon	=0		_	_	_
AK4 Jet	≤1	≤2	_	—	—
b tagged AK4 jet	=0	_	=0	=0	≤1

Source	$h \rightarrow bb$		$h \rightarrow \gamma \gamma$	$h \rightarrow \tau \tau$	$h \rightarrow WW$	$h \to ZZ$
	Z'-2HDM	Baryonic Z'				
AK4 jet b tagging	} _{2 11%}	Uncorr. (3-4%)	_	4%	Shape (1%)	1%
AK4 jet b mistag	J 5-11 /8	Shape (5–7%)	_	2–5%	Shape (1%)	_
e ident. efficiency	4%	2%	—	2%	Shape (2%)	2.5–9.0%
μ ident. efficiency	4%	2%	—	2%	Shape (2%)	2.5-9.0%
$\tau_{\rm h}$ ident. efficiency	3%	3%	_	4.5%	Shape (1%)	_
e energy scale	1%	—	_	—	Shape (1%)	3%
μ energy scale	1%	—		—	Shape (1%)	0.4%
JES	_	Uncorr. (4%)	_	Shape (<10%)	Shape (3%)	2–3%
Int. luminosity	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%
Signal (PDF, scales)	0.3–9.0%	0.3-9.0%	0.3–9.0%	0.3-9.0%	0.3–9.0%	0.3–9.0%

Decay channel	Final state or category	Reference
$\mathbf{h} ightarrow \mathbf{b}\mathbf{b}$	AK8 jet (Z'-2HDM) CA15 jet (Baryonic Z')	[30] [31]
$ m h ightarrow \gamma \gamma$	$p_{\mathrm{T}}^{\mathrm{miss}} \in 50-130\mathrm{GeV}$ $p_{\mathrm{T}}^{\mathrm{miss}} > 130\mathrm{GeV}$	[32] [32]
$h \rightarrow \tau \tau$	$rac{ au_{h} au_{h}}{\mu au_{h}}$ $e au_{h}$	[32] [32] [32]
$\mathbf{h} \to \mathbf{W} \mathbf{W}$	eνμν	
h ightarrow ZZ	4е 4µ 2е2и	

Table 2: Summary of the kinematic selections used to define the SR for both the MTR and the VTR categories.

Observable	MTR	VTR	
Choice of pair	leading- $p_{\rm T}$ jets	leading- <i>m</i> _{ij} jets	
Leading (subleading) jet	$p_{\rm T} > 80 (40) {\rm GeV}, \eta < 4.7$	$p_{\rm T} > 140 (70) { m GeV}, \eta < 4.7$	
$p_{\mathrm{T}}^{\mathrm{miss}}$	> 250 GeV	$160 < p_{ m T}^{ m miss} < 250{ m GeV}$	
$\min(\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{jet}}))$	>0.5	>1.8	
$ \Delta \phi_{ii} $	<1.5	<1.8	
m _{ii}	$>200\mathrm{GeV}$	>900 GeV	
$ p_{\rm T}^{\rm miss} - {\rm calo} \ p_{\rm T}^{\rm miss} /p_{\rm T}^{\rm miss} $	<	0.5	
Leading/subleading jets $ \eta < 2.5$	NHEF < 0.8, CHEF > 0.1		
HF noise jet candidates	0 (using the requirements from Table 1)		
$\tau_{\rm h}$ candidates	$N_{\tau_{h}} = 0$ with $p_{T} > 20 \text{GeV}$, $ \eta < 2.3$		
b quark jet	$N_{jet} = 0$ with $p_T > 200$	GeV, DeepCSV Medium	
$\eta_{j1}\eta_{j2}$	<	<0	
$ \Delta \eta_{jj} $		>1	
Electrons (muons)	$N_{e,\mu} = 0$ with $p_T > 1$	10 GeV, $ \eta < 2.5 (2.4)$	
Photons	$N_{\gamma} = 0$ with p_{T} >	> 15 GeV, $ \eta < 2.5$	

Source of uncertainty	Ratios	Uncertainty vs. <i>m</i> _{jj}
	Theoretical uncertainties	
Ren. scale V+jets (VBF)	$f_i^{W/Z,VBF}$	7.5%
Ren. scale V+jets (strong)	$f_i^{W/Z, strong}$	8.2%
Fac. scale V+jets (VBF)	$f_i^{W/Z,VBF}$	1.5%
Fac. scale V+jets (strong)	$f_i^{W/Z, strong}$	1.3%
PDF V+jets (VBF)	f _i W/Z,VBF	0%
PDF V+jets (strong)	W/Z,strong	0%
NLO EW corr. V+jets (strong)	W/Z,strong	0.5%
Ren. scale γ +jets (VBF)	$f_i^{\gamma/Z,\text{VBF}}$	6-10%
Ren. scale γ +jets (strong)	$f_i^{\gamma/Z,\text{strong}}$	6–10%
Fac. scale γ +jets (VBF)	$f_i^{\gamma/Z,\text{VBF}}$	2.5%
Fac. scale γ +jets (strong)	$f_i^{\gamma/Z,\text{strong}}$	2.5%
PDF γ +iets (VBF)	$f_{i}^{\gamma/Z,\text{VBF}}$	2.5%
PDF γ +jets (strong)	$f_i^{\gamma/Z,\text{strong}}$	2.5%
NLO EW corr. γ +jets	$\int_{1}^{\gamma} / Z_{r}$ strong	3%
, ,	Experimental uncertainties	
Electron reco. eff	$R_{\rm CR, proc}^{\rm CR, proc}$ CR=Z(ee) or W(ev)	$\approx 0.5\%$ (per lepton)
Electron id. eff	$R_i^{CR, proc}$ CR=Z(ee) or W(ev)	$\approx 1\%$ (per lepton)
Muon id. eff	$R_i^{CR, proc}$, $CR = Z(uu)$ or $W(uv)$	$\approx 0.5\%$ (per lepton)
Muon iso eff	$R_i^{CR, proc} CR = Z(\mu\mu) \text{ or } W(\mu\nu)$	$\approx 0.1\%$ (per lepton)
Photon id. eff.	$f_i^{\gamma/Z, \text{proc}}$	5%
Flectron veto (reco)	$f_{i}^{W/Z, \text{proc}} R_{i}^{CR, \text{proc}} CR = W(\ell \nu)$	≈ 1.5 (1)% for VBF (strong)
Electron veto (id)	$f_i^{W/Z, \text{proc}} R_i^{CR, \text{proc}} CR = W(\ell \nu)$	≈ 2.5 (2)% for VBF (strong)
Muon veto	$f^{W/Z, proc} R^{CR, proc} CR = W(\ell \nu)$	≈0.5%
T. veto	$f_i^{W/Z, \text{proc}} R^{CR, \text{proc}} CR = W(\ell \nu)$	≈1%
Flectron trigger	$R_{i}^{CR, proc} CR = Z(ee) \text{ or } W(ev)$	$\approx 1\%$
n^{miss} trigger	$R_i^{CR, proc}$ $CR=Z(uu)$ or $W(uv)$	$\approx 2\%$
Photon trigger	$f^{\gamma/Z, \text{proc}}$	1%
inoton ungger	J_i W/Z proc	1/0
	$f_i^{(r)}$	1-2%
JES	R_i^{explot} , CR=W(ev) or W($\mu\nu$)	1.0-1.5%
	$R_i^{c,c,\mu}$, CR=Z(ee) or Z($\mu\mu$)	1%
	$f_i^{\mu\nu}$	3%
	$f_i^{W/Z, proc}$	1.0-2.5%
IFR	$R_i^{CR, proc}$, CR=W(ev) or W($\mu\nu$)	1.0-1.5%
JER	$R_i^{CR, proc}$, CR=Z(ee) or Z($\mu\mu$)	1%
	$f_i^{\gamma/Z, \text{proc}}$	1–4%

Dark Photon

Data-taking year	2016 2017/2018				
Variable	VBF+ γ Single photon $p_{\rm T}^{\rm mi}$				
Number of photons		≥ 1 photon			
p_{T}^{γ}	>80 GeV	>230 GeV	> 80 GeV		
Number of leptons		0			
$p_{\mathrm{T}}^{\mathrm{miss}}$	>100 GeV	>140 GeV	> 140 GeV		
Jet counting		2-5			
m _{ii}	>500 GeV				
$ \Delta \eta_{ii} $	>3.0				
$\eta_{i_1} \stackrel{"}{\times} \eta_{i_2}$		<0			
$\Delta \phi_{\rm jet, \vec{p}_{\rm T}^{\rm miss}}$	>1.0				
z_{γ}^{*}		<0.6			
$p_{\mathrm{T}}^{\mathrm{tot}}$		<150 GeV			

Region	Bins	Range (GeV)
SR, $m_{ii} < 1500 \text{GeV}$	6	[0,30,60,90,170,250,inf]
SR, $m_{jj} \ge 1500 \mathrm{GeV}$	6	[0,30,60,90,170,250,inf]
W + jets CR, $m_{ii} < 1500 \text{GeV}$	3	[0,90,250,inf]
$W + jets CR, m_{ii} \ge 1500 GeV$	3	[0,90,250,inf]
$Z(\ell \bar{\ell}) + \gamma CR$, $\ddot{m}_{ii} < 1500 \text{GeV}$	1	[0,inf]
$Z(\ell \bar{\ell}) + \gamma CR, m_{ii} \ge 1500 \text{GeV}$	1	[0,inf]
$W(\rightarrow \ell \nu) + \gamma C \ddot{R}, m_{ii} < 1500 \text{GeV}$	1	[0,inf]
$W(\rightarrow \ell \nu) + \gamma CR, m_{ij} \ge 1500 \text{GeV}$	1	[0,inf]
$\gamma + ext{jets} \operatorname{CR}$, $m_{ ext{ij}} < 1500 ext{GeV}$	1	[0,inf]
$\gamma + \text{jets CR}, m_{ii} \ge 1500 \text{GeV}$	1	[0,inf]

Dark Higgs

_____ 20

Dark Higgs comparison

VBF Higgs Invisible ATLAS

 $H \rightarrow invisible$ 95% upper limit at 15%

