

Closing the window on WIMP Dark Matter

Salvatore Bottaro

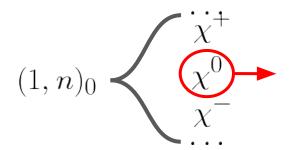
Based on: 2107.09688 and 2205.04486

with D.Buttazzo, M.Costa, R.Franceschini, P.Panci, D.Redigolo, L.Vittorio

- Upcoming experiments:
 - 1. Direct Detection (LZ, DARWIN, XenonNT...)
 - 2. Indirect Detection (CTA, LHAASO)
 - 3. Muon collider (?)

- Upcoming experiments:
 - 1. Direct Detection (LZ, DARWIN, XenonNT...)
 - 2. Indirect Detection (CTA, LHAASO)
 - 3. Muon collider (?)
- Minimal, predictive theoretical framework:
 - 1. SM increased with a single EW multiplet
 - 2. Three parameters (n, Y, M)
 - 3. M determined by gauge interactions through freeze-out

- Upcoming experiments:
 - 1. Direct Detection (LZ, DARWIN, XenonNT...)
 - 2. Indirect Detection (CTA, LHAASO)
 - 3. Muon collider (?)
- Minimal, predictive theoretical framework:
 - 1. SM increased with a single EW multiplet
 - 2. Three parameters (n, Y, M)
 - 3. M determined by gauge interactions through freeze-out
- Not fully nor systematically explored


2107.09688

2107.09688

$$\begin{split} \mathscr{L}_{\rm s} &= \frac{1}{2} \left(D_{\mu} \chi \right)^2 - \frac{1}{2} M_{\chi}^2 \chi^2 - \frac{\lambda_H}{2} \chi^2 |H|^2 - \frac{\lambda_{\chi}}{4} \chi^4 \,, \\ \mathscr{L}_{\rm f} &= \frac{1}{2} \chi \left(i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi} \right) \chi \,, \end{split}$$

2107.09688

$$\begin{aligned} \mathscr{L}_{\rm s} &= \frac{1}{2} \left(D_{\mu} \chi \right)^2 - \frac{1}{2} M_{\chi}^2 \chi^2 - \frac{\lambda_H}{2} \chi^2 |H|^2 - \frac{\lambda_{\chi}}{4} \chi^4 \,, \\ \mathscr{L}_{\rm f} &= \frac{1}{2} \chi \left(i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi} \right) \chi \,, \end{aligned}$$

Naturally vanishing coupling to the Z-boson

2107.09688

$$\begin{aligned} \mathscr{L}_{\rm s} &= \frac{1}{2} \left(D_{\mu} \chi \right)^2 - \frac{1}{2} M_{\chi}^2 \chi^2 - \frac{\lambda_H}{2} \chi^2 |H|^2 - \frac{\lambda_{\chi}}{4} \chi^4 \,, \\ \mathscr{L}_{\rm f} &= \frac{1}{2} \chi \left(i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi} \right) \chi \,, \end{aligned}$$

$$(1, n)_0$$
 $\begin{pmatrix} \chi^+ \\ \chi^0 \\ \chi^- \\ \chi^- \end{pmatrix}$ $\Delta M = (167 \pm 4) \text{ MeV}$

$$W^{+}M^{-}$$

$$X^{+}$$

$$\chi^{0}$$

$$\chi^{+}$$

$$\chi^{0}$$

$$\chi^{+}$$

$$\chi^{0}$$

$$\chi^{+}$$

$$\chi^{0}$$

$$\chi^{+}$$

$$\chi^{0}$$

$$\chi^{+}$$

$$\chi^{0}$$

$$\chi^{\pm}$$

$$\chi^{0}$$

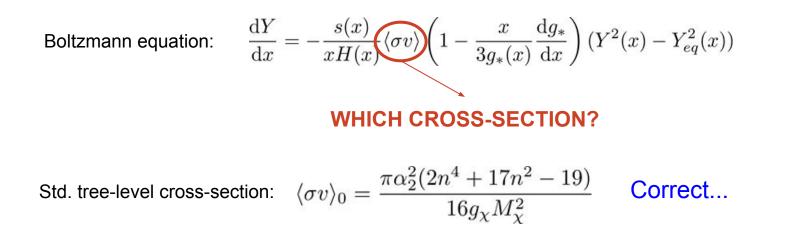
$$\chi^{\pm}$$

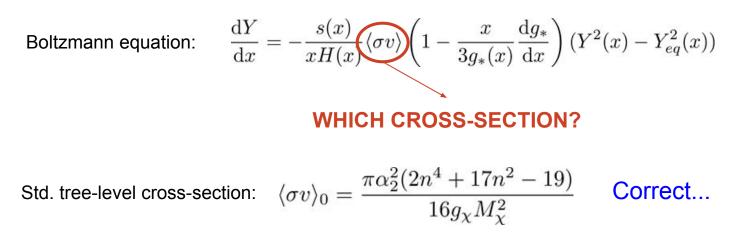
$$\chi^{0}$$

Cheng '98 Feng '99 Gherghetta '99 Ibe '12 McKay '18

2107.09688

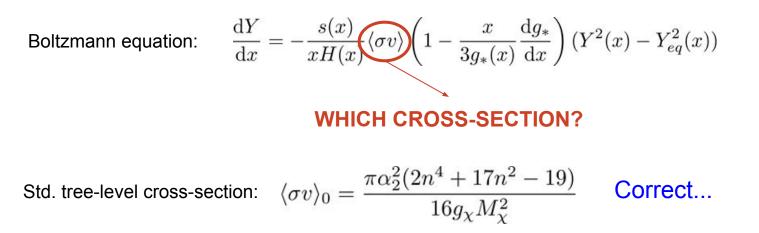
$$\begin{aligned} \mathscr{L}_{\rm s} &= \frac{1}{2} \left(D_{\mu} \chi \right)^2 - \frac{1}{2} M_{\chi}^2 \chi^2 - \frac{\lambda_H}{2} \chi^2 |H|^2 - \frac{\lambda_{\chi}}{4} \chi^4 \,, \\ \mathscr{L}_{\rm f} &= \frac{1}{2} \chi \left(i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi} \right) \chi \,, \end{aligned}$$


$$(1, n)_{0} \checkmark^{i} \uparrow^{i} \uparrow^{i}$$


Boltzmann equation:

$$\frac{\mathrm{d}Y}{\mathrm{d}x} = -\frac{s(x)}{xH(x)} \langle \sigma v \rangle \left(1 - \frac{x}{3g_*(x)} \frac{\mathrm{d}g_*}{\mathrm{d}x} \right) \left(Y^2(x) - Y^2_{eq}(x) \right)$$

Boltzmann equation:


$$\frac{\mathrm{d}Y}{\mathrm{d}x} = -\frac{s(x)}{xH(x)} (\sigma v) \left(1 - \frac{x}{3g_*(x)} \frac{\mathrm{d}g_*}{\mathrm{d}x}\right) (Y^2(x) - Y^2_{eq}(x))$$
WHICH CROSS-SECTION?

... but inaccurate! Important physics is missing

- Sommerfeld enhancement
- Bound states formation

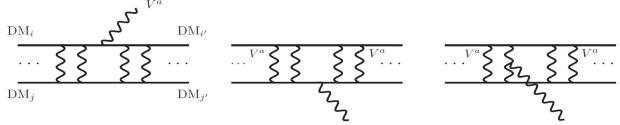
... but inaccurate! Important physics is missing

- Sommerfeld enhancement
- Bound states formation

Large non-perturbative, non-relativistic effects!

Sommerfeld Effect (SE) & Bound States (BS)

SE: Potentials deform the wave function of incoming particles

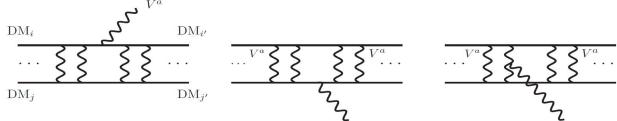

$$-\frac{\nabla^2 \psi}{M_{\chi}} + V\psi = E\psi \qquad \quad \langle \sigma v \rangle_0 \to \begin{cases} \langle \sigma v \rangle = S_{Som}(x) \langle \sigma v \rangle_0 \\ S_{Som}(x) \propto |\psi(0)|^2 \end{cases}$$

Sommerfeld Effect (SE) & Bound States (BS)

SE: Potentials deform the wave function of incoming particles

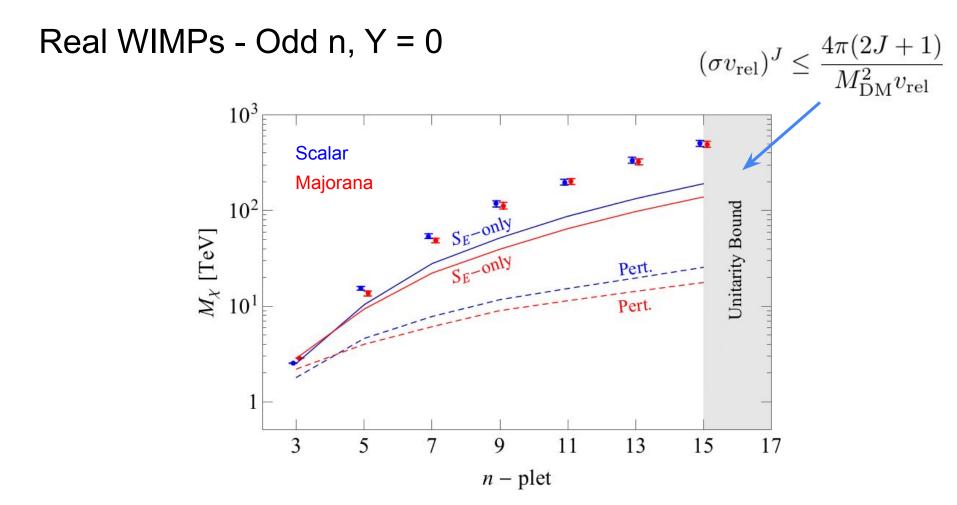
$$-\frac{\nabla^2 \psi}{M_{\chi}} + V\psi = E\psi \qquad \quad \langle \sigma v \rangle_0 \to \begin{cases} \langle \sigma v \rangle = S_{Som}(x) \langle \sigma v \rangle_0 \\ S_{Som}(x) \propto |\psi(0)|^2 \end{cases}$$

BS: Particle-Antiparticle pair bind into a wimponium bound state emitting a gauge boson

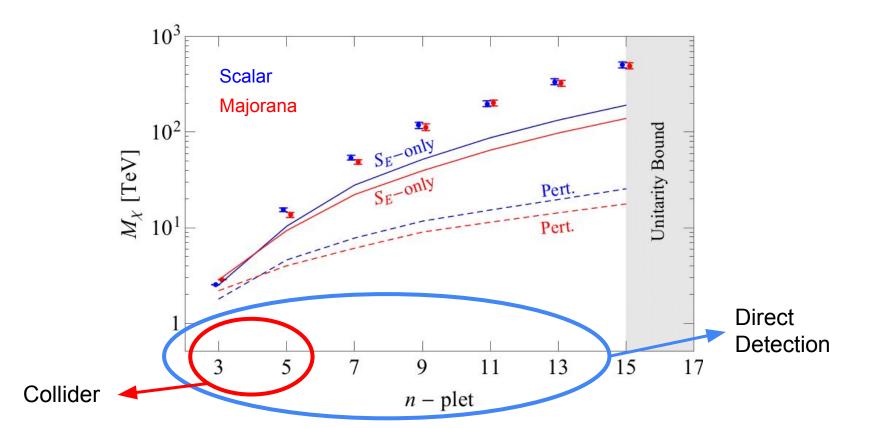


Sommerfeld Effect (SE) & Bound States (BS)

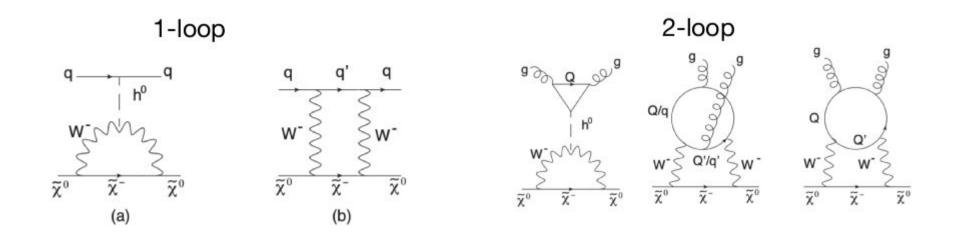
SE: Potentials deform the wave function of incoming particles


$$-\frac{\nabla^2 \psi}{M_{\chi}} + V\psi = E\psi \qquad \quad \langle \sigma v \rangle_0 \to \begin{cases} \langle \sigma v \rangle = S_{Som}(x) \langle \sigma v \rangle_0 \\ S_{Som}(x) \propto |\psi(0)|^2 \end{cases}$$

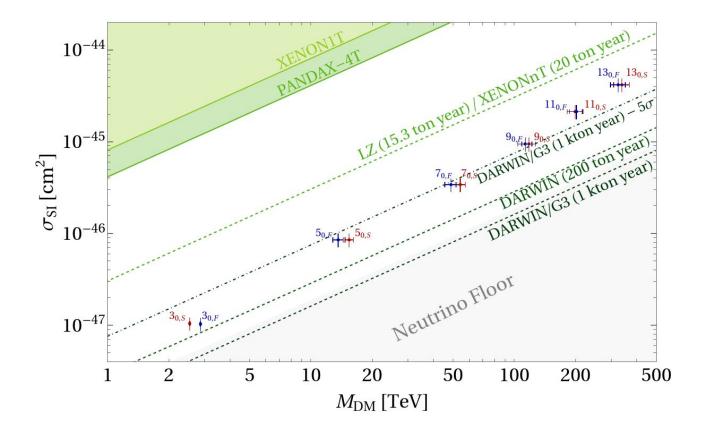
BS: Particle-Antiparticle pair bind into a wimponium bound state emitting a gauge boson



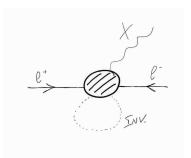
The pair in the bound state later annihilates into SM (annihilation enhancement)


$$\text{Mitridate `17} \qquad S(x) = S_{Som}(x) + \left[\frac{\langle \sigma v \rangle_0}{\langle \sigma_I v \rangle} + \frac{g_{\chi}^2 \langle \sigma v \rangle_0 M_{\chi}^3}{2g_I \Gamma_{ann}} \left(\frac{1}{4\pi x}\right)^{\frac{3}{2}} e^{-xE_{B_I}/M_{\chi}}\right]^{-1}$$

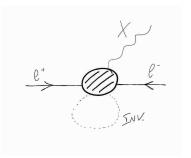

```
Real WIMPs - Odd n, Y = 0
```



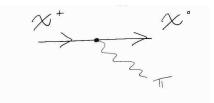
Direct Detection


Hisano '05, Hisano '10

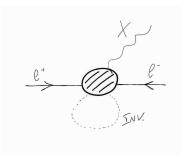
Direct Detection


• Mono-X and Di-X searches (X = γ , W, Z)

See also Han et al. 2009.11287


• Mono-X and Di-X searches $(X = \gamma, W, Z)$

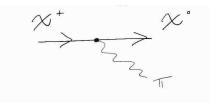
See also Han et al. 2009.11287

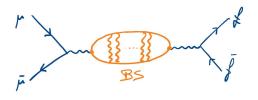

• Disappearing tracks (1DT, 2DT)

Recast of Capdevila et al. 2102.11292

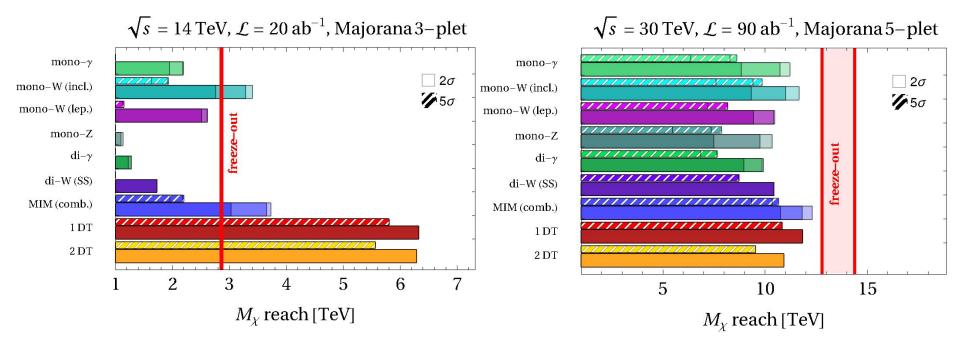
• Mono-X and Di-X searches $(X = \gamma, W, Z)$

See also Han et al. 2009.11287



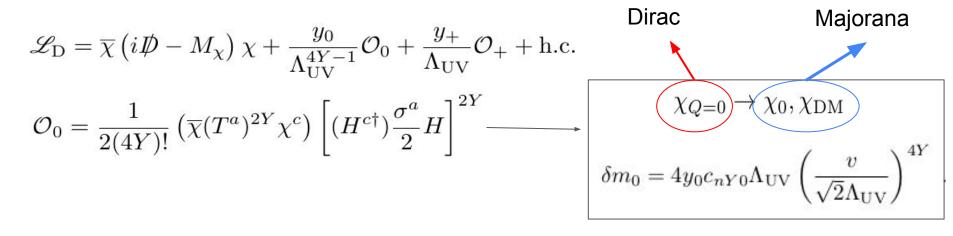

• Disappearing tracks (1DT, 2DT)

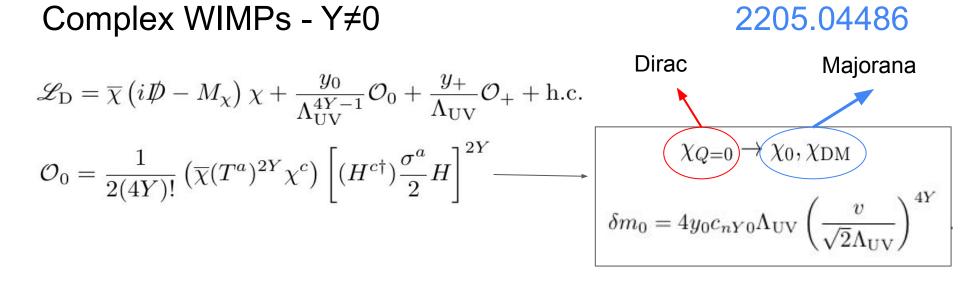
Recast of Capdevila et al. 2102.11292


• Resonant production of bound states

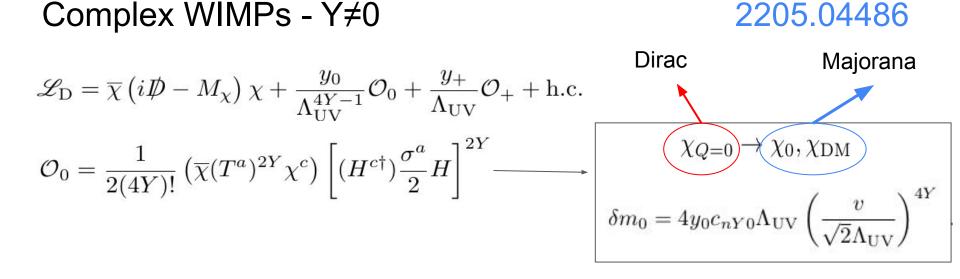
Bottaro et al. 2103.12766

Reach


2205.04486


$$\mathscr{L}_{\mathrm{D}} = \overline{\chi} \left(i \not\!\!D - M_{\chi} \right) \chi + \frac{y_0}{\Lambda_{\mathrm{UV}}^{4Y-1}} \mathcal{O}_0 + \frac{y_+}{\Lambda_{\mathrm{UV}}} \mathcal{O}_+ + \mathrm{h.c.}$$

2205.04486


$$\mathscr{L}_{\mathrm{D}} = \overline{\chi} \left(i \not{D} - M_{\chi} \right) \chi + \frac{y_{0}}{\Lambda_{\mathrm{UV}}^{4Y-1}} \mathcal{O}_{0} + \frac{y_{+}}{\Lambda_{\mathrm{UV}}} \mathcal{O}_{+} + \mathrm{h.c.}$$
$$\mathcal{O}_{0} = \frac{1}{2(4Y)!} \left(\overline{\chi} (T^{a})^{2Y} \chi^{c} \right) \left[(H^{c\dagger}) \frac{\sigma^{a}}{2} H \right]^{2Y} \xrightarrow{\chi^{c}} \delta m_{0} = 4y_{0} c_{nY0} \Lambda_{\mathrm{UV}} \left(\frac{v}{\sqrt{2} \Lambda_{\mathrm{UV}}} \right)^{4Y}$$

$$\mathscr{L}_{Z} = \frac{ieY}{\sin\theta_{W}\cos\theta_{W}} \overline{\chi}_{0} \mathscr{Z}\chi_{\rm DM} \longrightarrow \frac{1}{2}\mu v_{\rm rel}^{2} < \delta m_{0} , \quad \mu = \frac{M_{\rm DM}m_{N}}{M_{\rm DM} + m_{N}}$$

$$\mathscr{L}_{Z} = \frac{ieY}{\sin\theta_{W}\cos\theta_{W}} \overline{\chi}_{0} \mathscr{Z}_{\chi_{\mathrm{DM}}} \longrightarrow \frac{1}{2} \mu v_{\mathrm{rel}}^{2} < \delta m_{0} , \quad \mu = \frac{M_{\mathrm{DM}}m_{N}}{M_{\mathrm{DM}} + m_{N}}$$
$$\Gamma(\chi_{0} \to \chi_{\mathrm{DM}}SM) > \tau_{\mathrm{BBN}}^{-1}$$

2205.04486

$$\mathscr{L}_{\mathrm{D}} = \overline{\chi} \left(i \not{\!\!D} - M_{\chi} \right) \chi + \frac{y_0}{\Lambda_{\mathrm{UV}}^{4Y-1}} \mathcal{O}_0 + \frac{y_+}{\Lambda_{\mathrm{UV}}} \mathcal{O}_+ + \mathrm{h.c.}$$
$$\mathcal{O}_0 = \frac{1}{2(4Y)!} \left(\overline{\chi} (T^a)^{2Y} \chi^c \right) \left[(H^{c\dagger}) \frac{\sigma^a}{2} H \right]^{2Y}$$

$$\mathcal{O}_{+} = -\overline{\chi}T^{a}\chi H^{\dagger}\frac{\sigma^{a}}{2}H$$

2205.04486

$$\mathscr{L}_{\mathrm{D}} = \overline{\chi} \left(i \not{\!\!D} - M_{\chi} \right) \chi + \frac{y_0}{\Lambda_{\mathrm{UV}}^{4Y-1}} \mathcal{O}_0 + \frac{y_+}{\Lambda_{\mathrm{UV}}} \mathcal{O}_+ + \mathrm{h.c.}$$
$$\mathcal{O}_0 = \frac{1}{2(4Y)!} \left(\overline{\chi} (T^a)^{2Y} \chi^c \right) \left[(H^{c\dagger}) \frac{\sigma^a}{2} H \right]^{2Y}$$

$$\mathcal{O}_{+} = -\overline{\chi}T^{a}\chi H^{\dagger}\frac{\sigma^{a}}{2}H$$

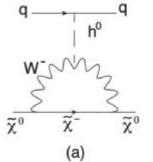
$$\Delta M_{\text{gauge}} = 167 \text{ MeV}\left(Q^2 + \frac{2QY}{\cos\theta_W}\right) \longrightarrow$$

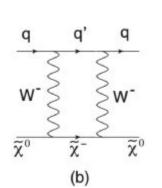
 \mathcal{O}_+ necessary to make DM the lightest component of the multiplet unless

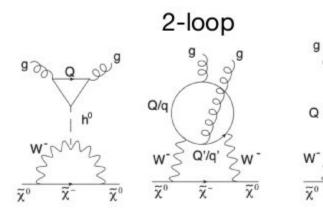
$$Y = 0, \quad |Y| = \frac{n-1}{2}$$

2205.04486

$$\mathscr{L}_{\mathrm{D}} = \overline{\chi} \left(i \not{\!\!D} - M_{\chi} \right) \chi + \frac{y_0}{\Lambda_{\mathrm{UV}}^{4Y-1}} \mathcal{O}_0 + \frac{y_+}{\Lambda_{\mathrm{UV}}} \mathcal{O}_+ + \mathrm{h.c.}$$
$$\mathcal{O}_0 = \frac{1}{2(4Y)!} \left(\overline{\chi} (T^a)^{2Y} \chi^c \right) \left[(H^{c\dagger}) \frac{\sigma^a}{2} H \right]^{2Y}$$


$$\mathcal{O}_{+} = -\overline{\chi}T^{a}\chi H^{\dagger}\frac{\sigma^{a}}{2}H$$


Surviving candidates:

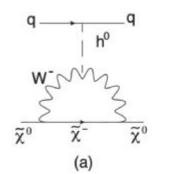

- Y=¹/₂, n<13 (perturbative unitarity bound)
- Y=1, n= 3, 5 (perturbativity of mass splitting)
- Y>1 are non-perturbative!

Direct Detection

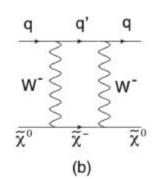
1-loop

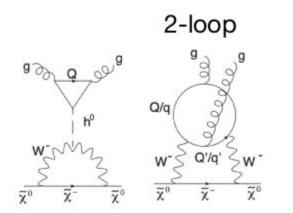
222 0

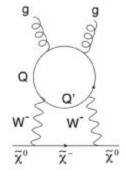
Q'

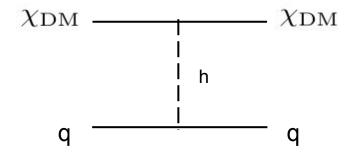

W

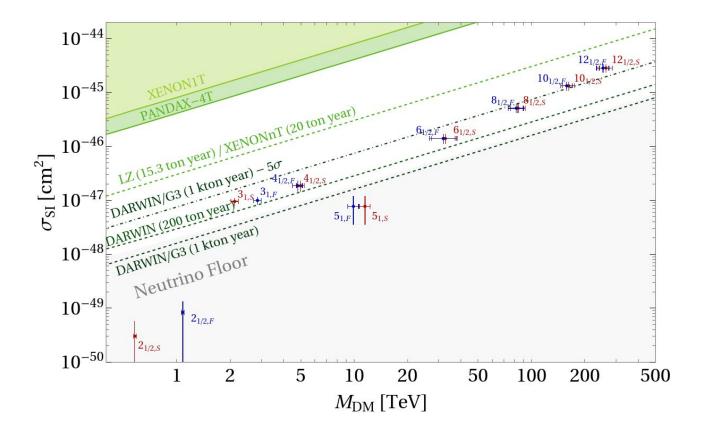
x-

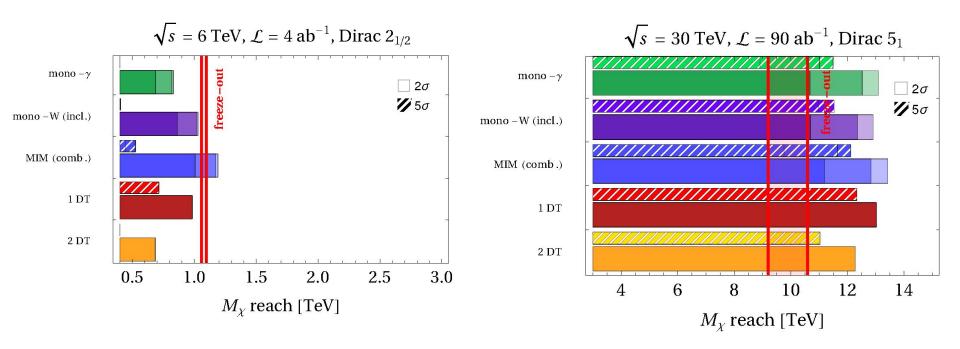

 $\tilde{\chi}^0$

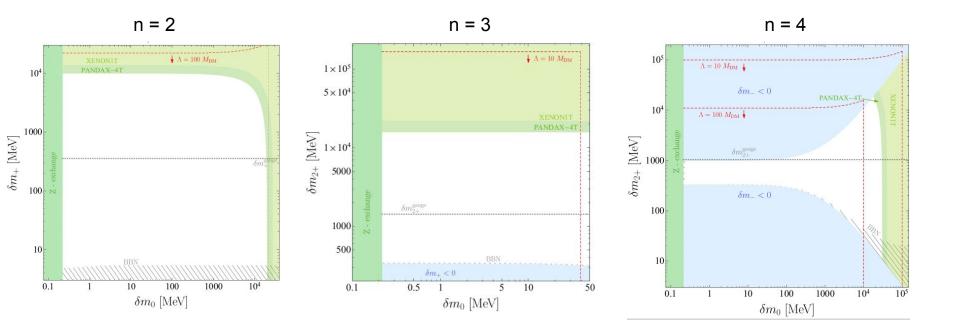

Direct Detection


1-loop

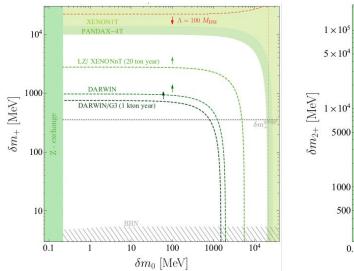

 $\mathcal{O}_0, \mathcal{O}_+$



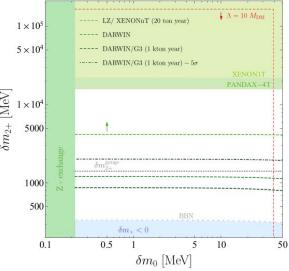

generate tree-level coupling to the Higgs

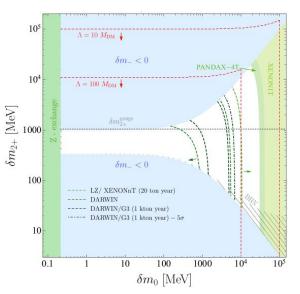


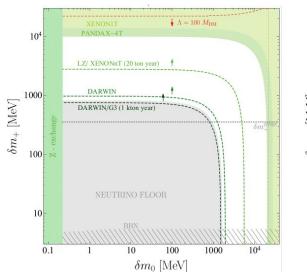
Direct Detection - Minimal Splitting

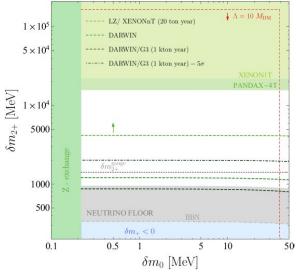


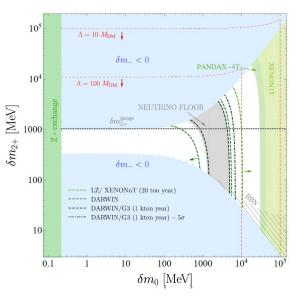
Muon Collider - Minimal Splitting

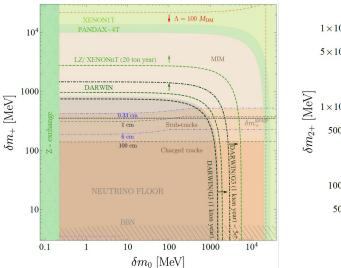


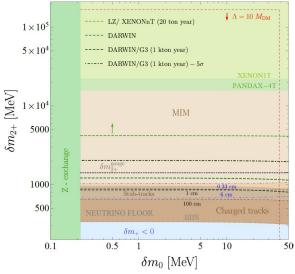

n = 2

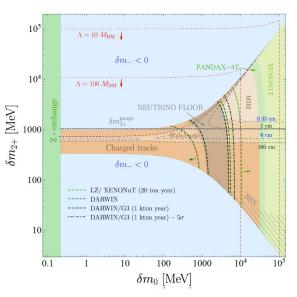

n = 3


n = 4


n = 2

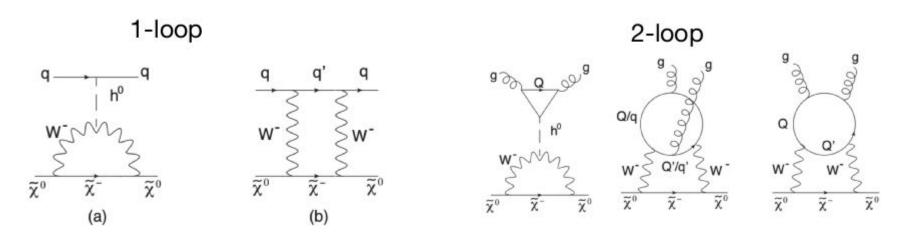

n = 3


n = 4


n = 2

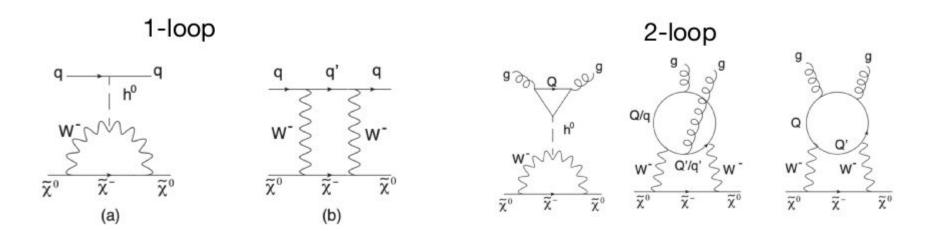
n = 3


n = 4


Conclusions

- We computed the thermal mass of all perturbative WIMP candidates
- Real candidates can all be excluded by high exposure (> 200 ton x year)
 Xenon experiments like DARWIN
- Complex candidates with Y≠ 0 and minimal splitting can also be excluded by DARWIN, with the exception of n=2 and 5
- Future DD experiments can close most of the parameter space spanned by mass splittings
- Collider can close the parameter space for light multiplets, while ID for the heavier ones (future work)

Thanks for the attention


Direct Detection

$$\mathscr{L}_{\text{eff}}^{\text{SI}} = \bar{\chi}\chi (f_q) n_q \bar{q}q + (f_G G_{\mu\nu} G^{\mu\nu}) + (g_q) M_{\chi} \bar{\chi} i \partial^{\mu} \gamma^{\nu} \chi \mathcal{O}^q_{\mu\nu}$$

Hisano '05, Hisano '10

Direct Detection

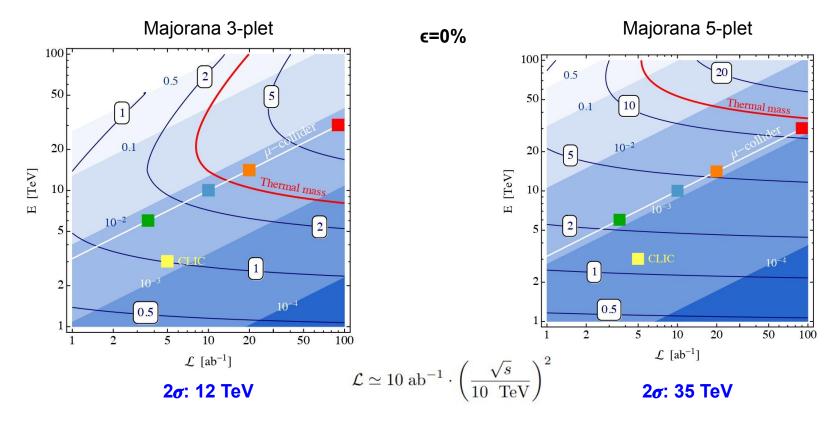
$$\mathscr{L}_{\text{eff}}^{\text{SI}} = \bar{\chi}\chi \left(f_q m_q \bar{q}q + f_{\text{C}} G_{\mu\nu} G^{\mu\nu}\right) + \frac{g_q}{M_{\chi}} \bar{\chi} i \partial^{\mu} \gamma^{\nu} \chi \mathcal{O}_{\mu\nu}^q$$

Hisano '05, Hisano '10

Flag '20

Real WIMPs

DM spin	EW n-plet	M_{χ} (TeV)	$(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$	$\Lambda_{\rm Landau}/M_{\rm DM}$	$\Lambda_{\rm UV}/M_{\rm DM}$
Real scalar	3	2.53 ± 0.01	-	2.4×10^{37}	$4 \times 10^{24} *$
	5	15.4 ± 0.7	0.002	$7 imes 10^{36}$	3×10^{24}
	7	54.2 ± 3.1	0.022	7.8×10^{16}	2×10^{24}
	9	117.8 ± 15.4	0.088	3×10^4	2×10^{24}
	11	199 ± 42	0.25	62	1×10^{24}
	13	338 ± 102	0.6	7.2	2×10^{24}
Majorana fermion	3	2.86 ± 0.01	_	2.4×10^{37}	$2 \times 10^{12}*$
	5	13.6 ± 0.8	0.003	5.5×10^{17}	3×10^{12}
	7	48.8 ± 3.3	0.019	1.2×10^4	1×10^8
	9	113 ± 15	0.07	41	1×10^8
	11	202 ± 43	0.2	6	1×10^8
	13	324.6 ± 94	0.5	2.6	1×10^8

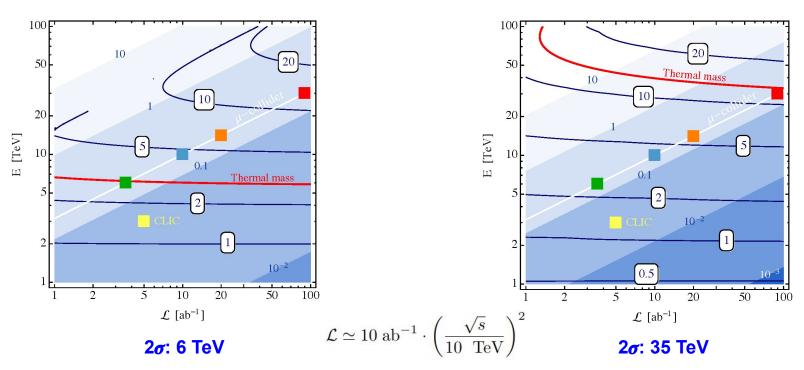

Complex WIMPs Y=0

DM spin	n_{ϵ}	$M_{\rm DM}~({\rm TeV})$	$\Lambda_{\rm Landau}/M_{\rm DM}$	$(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$
	3	$1.60\pm 0.01-2.4^{*}$	$> M_{\rm Pl}$	-
	5	11.3 ± 0.6	$> M_{\rm Pl}$	0.003
Complex sealer	7	47 ± 3	2×10^6	0.02
Complex scalar	9	118 ± 9	110	0.09
	11	217 ± 17	7	0.25
	13	352 ± 30	3	0.6
	3	$2.0 \pm 0.1 - 2.4^*$	$> M_{\rm Pl}$	-
	5	9.1 ± 0.5	4×10^6	0.002
Dirac fermion	7	45 ± 3	80	0.02
Dirac lerinion	9	115 ± 9	6	0.09
	11	211 ± 16	2.4	0.3
	13	340 ± 27	1.6	0.7

Complex WIMPs Y≠0

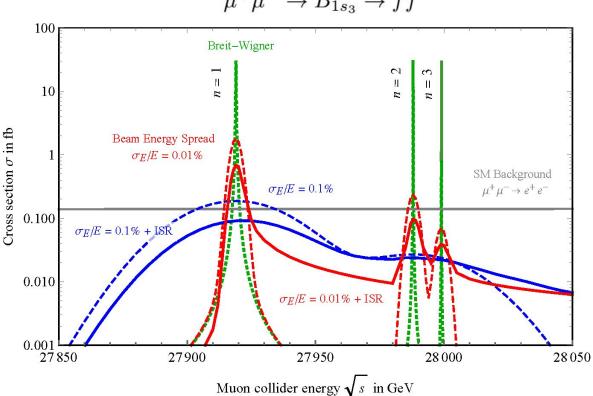
DM spin	n_Y	$M_{\rm DM}$ (TeV)	$\Lambda_{ m Landau}/M_{ m DM}$	$(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$	$\delta m_0 [{ m MeV}]$	$\Lambda_{\rm UV}^{\rm max}/M_{\rm DM}$	δm_{Q_M} [MeV]
Dirac fermion	$2_{1/2}$	1.08 ± 0.02	$> M_{\rm Pl}$	<u> 14</u>	$0.22 - 2 \times 10^4$	10^{7}	$4.8 - 10^4$
	3_1	2.85 ± 0.14	$> M_{\rm Pl}$		0.22 - 40	60	$312 - 1.6 \times 10^4$
	$4_{1/2}$	4.8 ± 0.3	$\simeq M_{\rm Pl}$	0.001	$0.21 - 3 \times 10^4$	5×10^{6}	$20 - 1.9 \times 10^4$
	5_{1}	9.9 ± 0.7	$3 imes 10^6$	0.003	0.21 - 3	25	$10^{3} - 2 \times 10^{3}$
	$6_{1/2}$	31.8 ± 5.2	2×10^4	0.01	0.5 - 2×10^4	4×10^5	$100 - 2 \times 10^4$
	$8_{1/2}$	82 ± 8	15	0.05	$0.84 - 10^4$	10^{5}	$440 - 10^4$
	$10_{1/2}$	158 ± 12	3	0.16	$1.2 - 8 \times 10^{3}$	6×10^{4}	$1.1 \times 10^3 - 9 \times 10^3$
	$12_{1/2}$	253 ± 20	2	0.45	1.6 - 6 $ imes$ 10^3	4×10^4	2.3×10^3 - 7×10^3
Complex scalar	$2_{1/2}$		$> M_{\rm Pl}$	2	$4.9 - 1.4 \times 10^4$	-	$4.2 - 7 \times 10^3$
	3_1	2.1 ± 0.1	$> M_{\rm Pl}$	-	3.7 - 500	120	75 - 1.3 $\times 10^4$
	$4_{1/2}$	4.98 ± 0.25	$> M_{\rm Pl}$	0.001	$4.9 - 3 \times 10^4$	<u>_</u>	$17 - 2 \times 10^4$
	5_{1}	11.5 ± 0.8	$> M_{\rm Pl}$	0.004	3.7 - 10	20	$650 - 3 \times 10^3$
	$6_{1/2}$	32.7 ± 5.3	$\simeq 6\times 10^{13}$	0.01	$4.9 - 8 \times 10^4$	-	50 - $5 imes 10^4$
	$8_{1/2}$	84 ± 8	2×10^4	0.05	$4.9 - 6 \times 10^4$	121	$150 - 6 \times 10^4$
	$10_{1/2}$	162 ± 13	20	0.16	$4.9 - 4 \times 10^4$		$430 - 4 \times 10^4$
	$12_{1/2}$		4	0.4	$4.9 - 3 \times 10^4$	-	10^3 - $3 imes 10^4$

Lumi vs Energy (Mono-W)



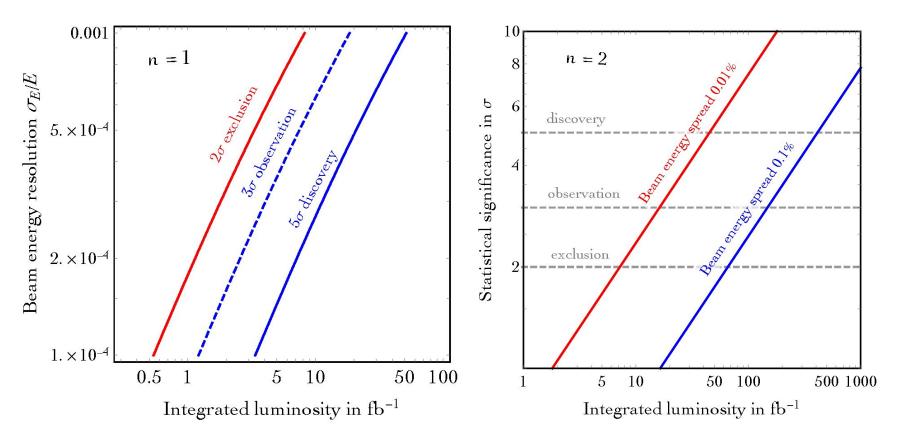
Lumi vs Energy (Disappearing tracks)

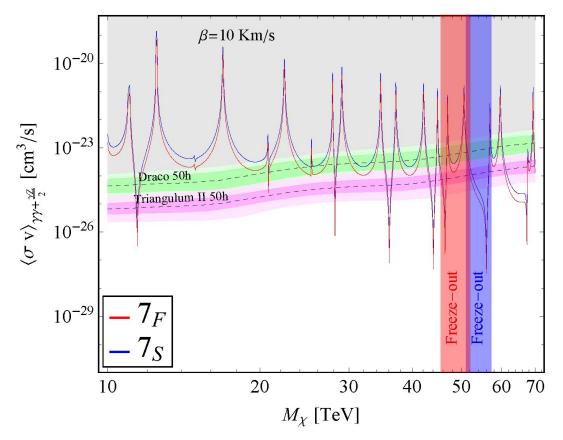
Majorana 3-plet


€=0%

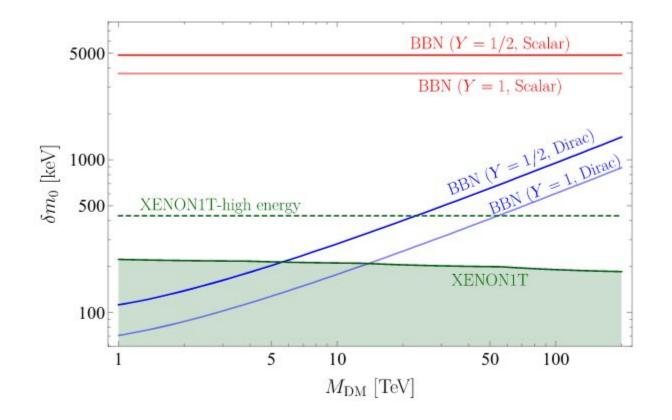
Majorana 5-plet

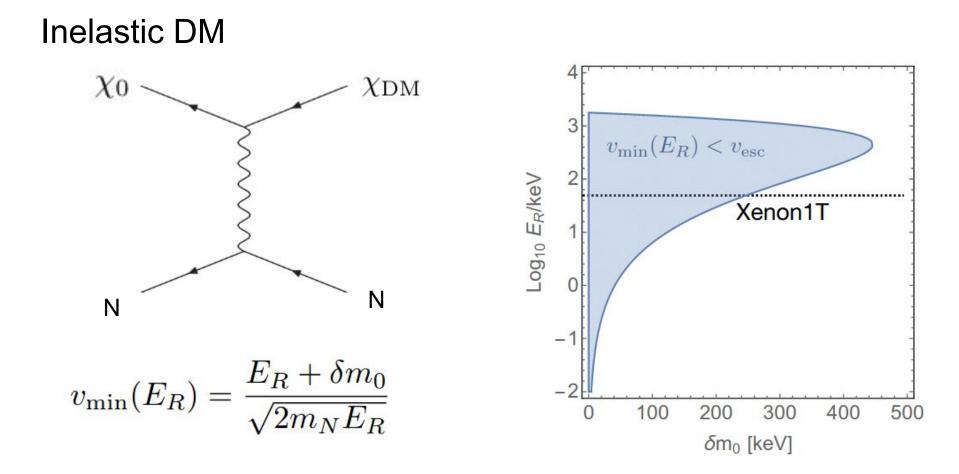
Bound states at muon colliders

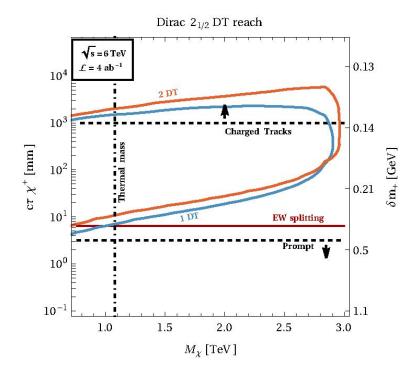


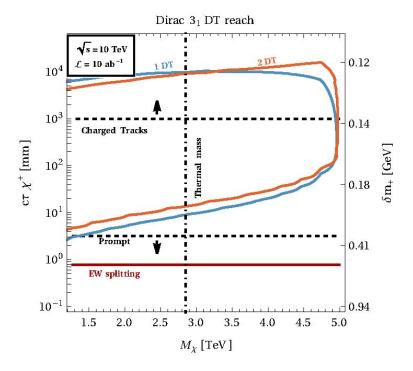

 $\mu^+\mu^- \to B_{1s_3} \to f\bar{f}$

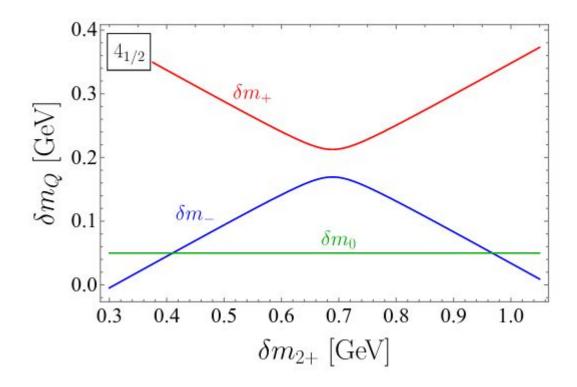
Bound states at muon colliders



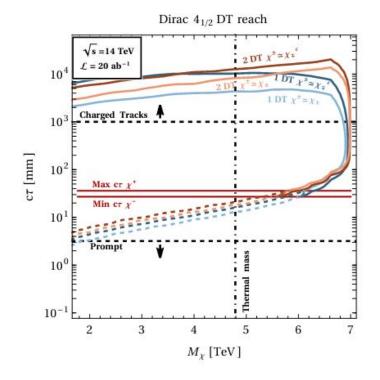

Indirect Detection

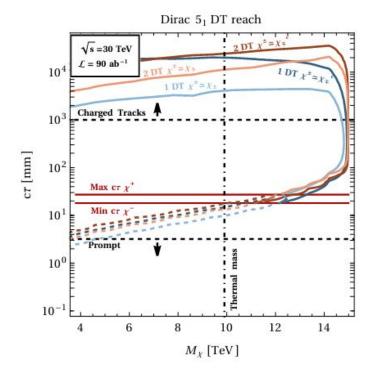

Complex WIMPs - Y≠0


2205.04486

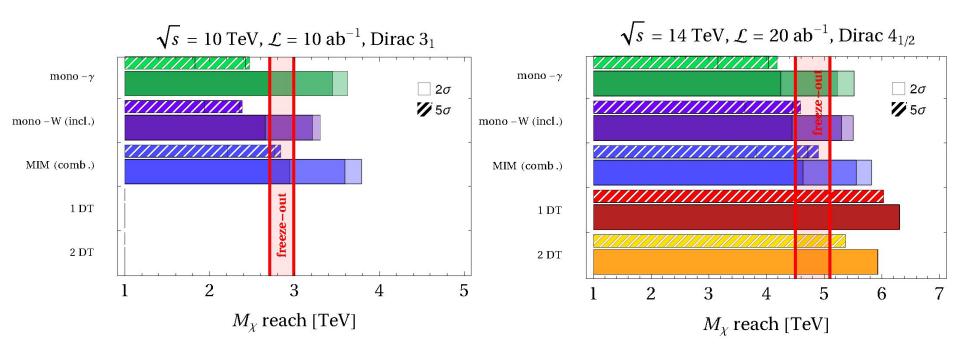


Reach Disappearing Tracks

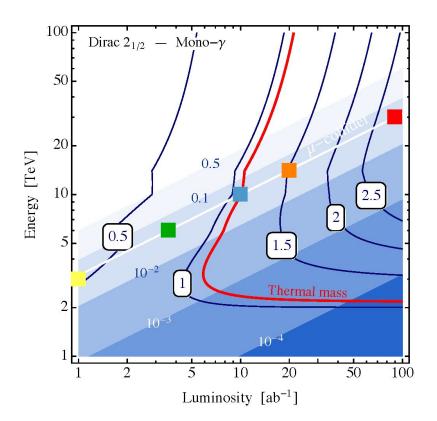


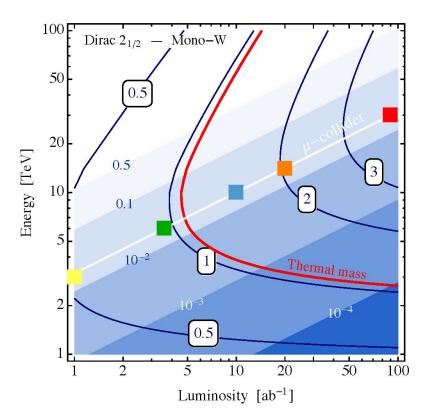


Spectrum 4_{1/2}

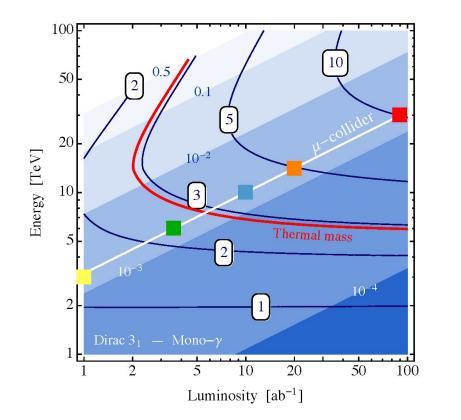


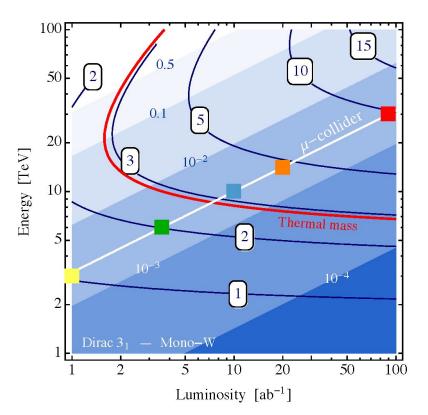
Reach Disappearing Tracks

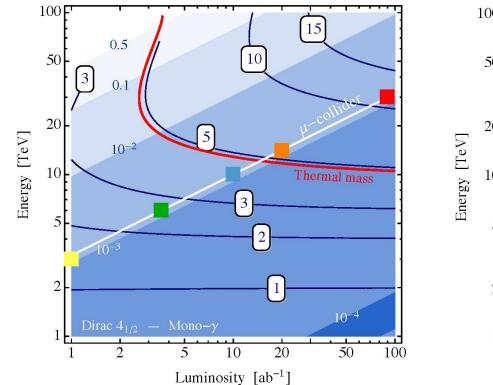


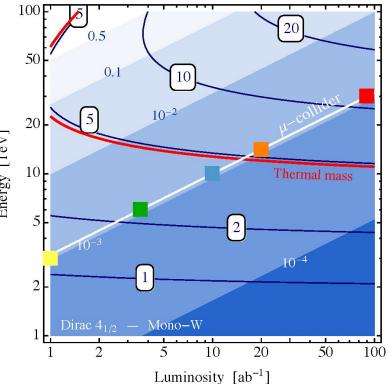


Reach




```
Lumi vs Energy Dirac 2<sub>1/2</sub>
```


```
Lumi vs Energy Dirac 3<sub>1</sub>
```



```
Lumi vs Energy Dirac 4<sub>1/2</sub>
```