# **Recent dark-sector results at Belle II**

# **Enrico Graziani**

#### INFN – Roma 3

on behalf of the Belle II Collaboration



#### **OUTLINE OF THE TALK**

✓ Belle II and SuperKEKB
✓ Search of
→ Dark Higgsstrahlung
→ Z' to invisible new
→ Z', S, ALP → ττ new
✓ Perspectives & Summary



#### Dark matter hunt with a light sector



### **From KEKB to SuperKEKB**



#### Collected luminosity up to now: 2019-2022



Peak luminosity world record: 4.7 x 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>

Resume physics run in fall 2023

### **Belle II detector**



### Dark Higgsstrahlung: e⁺e⁻→ A'h'





### **Dark Higgsstrahlung: results**





- Gauging  $L_{\mu}$   $L_{\tau}$  , the difference of leptonic  $\mu$  and  $\tau$  number
- A new gauge boson which couples only to the 2° and 3° lepton family
- Anomaly free (by construction)
- It may solve > dark matter puzzle >  $(g-2)_{\mu}$ >  $B \rightarrow K(^*)\mu\mu$ ,  $R_K$ ,  $R_{K^*}$  anomalies Shuve et al. (2014), arXiv 1408.2727 Altmannshofer et al. (2016) arXiv 1609.04026







μ,τ, ν, χ

μ,τ, ν, χ

μ



### Z' to invisible: analysis

Main backgrounds:

 $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$  $e^+e^- \rightarrow \tau^+\tau^-$  ( $\gamma$ ),  $\tau^\pm \rightarrow \mu^\pm \nu \nu$  $e^+e^- \rightarrow e^+e^- \mu^+\mu^-$ 

 $e^+e^- \rightarrow \mu^+\mu^- + missing energy$ 

e<sup>+</sup> 79.7 fb<sup>-1</sup> (2019-2020)

ρ

Look for bumps in recoil mass against a  $\mu^+\mu^-$  pair

Two-track trigger Two muons,  $p_T^{\mu} > 0.4 \text{ GeV/c}$ Recoil  $\rightarrow$  barrel ECL M<sub>recoil</sub><2 GeV/c<sup>2</sup> No extraenergy,  $\gamma$  veto

FSR vs ISR +  $\tau$  decay



### Z' to invisible: analysis

- $\tau^+\tau^-(\gamma)$  almost 100% suppressed
- $\mu^+\mu^-(\gamma)$  dominates up to ~7 GeV/c<sup>2</sup>
- $e^+e^-\mu^+\mu^-$  dominates for high masses

#### Look for bumps in $\theta_{recoil}$ vs $M^2_{recoil}$



#### **3 control samples**

μμγselection+NN studieseμselection+NN studiesee(γ)γ veto studies

low mass medium+high mass





### Z' to invisible: observed yields



### Z' to invisible: results

NEW

- No excess found
- Set 90%CL exclusion limits on cross section and coupling
  - Vanilla scenario: Z' decays to SM only
  - Fully invisible scenario



#### fully invisible Z' as origin of (g-2) $_{\mu}$ excluded for 0.8 < M<sub>z'</sub> < 5.0 GeV/c<sup>2</sup>





#### Z', S, ALP $\rightarrow \tau\tau$ : observed yields



#### Z', S, ALP $\rightarrow \tau\tau$ : results

 $M_S$  [GeV/ $c^2$ ]

ALP  $\rightarrow \tau \tau$ 

 $M_{ALP}$  [GeV/ $c^2$ ]

 $(q-2)_{\mu} \pm 2\sigma$ 

 $\int \mathcal{L} dt = 63.3 \text{ fb}^{-1}$ 

Expected UL  $\pm 2\sigma$ 

Expected UL  $\pm 1\sigma$ 

10

Belle II

90% CL

Preliminary

 $c_{\nu\nu} = c_{7\nu} = 0$ 

90% CL

Expected UL  $\pm 2\sigma$ 

Expected UL  $\pm 1\sigma$ 

9

10

 $\int \mathcal{L} dt = 63.3 \text{ fb}^{-1}$ 

Belle II

10<sup>3</sup>

10<sup>2</sup> ·

З

3

BaBal

Preliminary

BaBar

Ś

- No excess found ٠
- Set 90%CL exclusion limits on cross section and couplings ۲
  - First constraints on S for  $M_s > 6.5 \text{ GeV/c}^2$
  - First direct constraints for ALP  $\rightarrow \tau \tau$





## Summary

- Negative results from LHC and direct search experiments  $\rightarrow$  light dark sector scenario more and more attractive
- Belle II at SuperKEKB has great potential thank's to low-background collisions, hermeticity, dedicated triggers
- Belle II had two results with 2018 pilot run dataset: invisible Z' and ALP  $\rightarrow \gamma\gamma$
- **Belle II** started the physics run in 2019: 424 fb<sup>-1</sup> collected up to now
- **Today @ ICHEP 2022 :** World-leading results for searches of:
  - > **Dark Higgsstralung**  $e^+e^- \rightarrow A'h'$ , with  $A' \rightarrow \mu\mu$  and h' invisible
  - > Invisible Z' within the  $L_{\mu}$ - $L_{\tau}$  model
  - $\succ$  Z'  $\rightarrow \tau \tau$  within the L<sub>µ</sub>-L<sub> $\tau$ </sub> model
  - Leptophilic dark scalar S →ττ
  - > Axion-like-particle a  $\rightarrow \tau \tau$
- We expect to lead the light dark sector searches in the next decade

# **SPARE SLIDES**

#### **From KEKB to SuperKEKB**



... For a 30x increase in intensity you have to make the beam as thin as a few x100 atomic layers

### **Light Dark matter hunt**

Different signatures depending on the DM  $\leftrightarrow$  mediator mass relation



Probability of interaction of LDM detectors is negligible

- Search for mediators
- Search for missing energy signature
- Search for both

#### **Additional benefits:**

- Explanations of some astrophysics anomalies (PAMELA, AMS, FERMI, ...)
- Explanation of the (g-2)<sub>μ</sub> effect —

- Explanation (with additional hypotheses) of some flavour anomalies (LHCB, Belle, ...)
- Some light mediators (not interacting with quarks) could escape direct search exclusion limits

#### **Searching for dark matter**



### **Belle II trigger**

#### **Dark sector physics**

- Low multiplicity signatures
- Huge backgrounds from beam, Bhabha, two-photon

Level 1 hardware-based combines info from CDC, ECL, KLM

- Tracks, clusters, muons
- Two-track trigger
- Three-track trigger
- E<sub>ECL</sub>> 1 GeV trigger





Single track

Neural based

Single photon





### **Dark Higgsstrahlung: analysis**

10

6

40

41

M<sup>2</sup><sub>rec</sub> [GeV<sup>2</sup>/c<sup>4</sup>]



Two-track trigger Two muons,  $p_T^{\mu\mu} > 0.1 \text{ GeV/c}$ Recoil points to barrel ECL No extraenergy Scan M<sub>recoil</sub> vs M<sub>uu</sub>

~9000 overlapping elliptical mass windows





E. Graziani – Recebt dark-sector results at Belle II - ICHEP 2022

### **Dark Higgsstrahlung: systematics**

#### **2** control samples

μμγ μμ(γ) background eμ ττ background Split mass plane into orthogonal macroregions

- Each dominated by a single background source
- Data/MC normalization + shape

| source              | uncertainty            | target       |  |
|---------------------|------------------------|--------------|--|
| Pre-selections      | 2-9.1%                 | BKG & signal |  |
| BKG shape           | 9.3% (region specific) | BKG          |  |
| $C_\eta$ cut        | 1%                     | BKG          |  |
| Mass resolution     | 2.4% (on average)      | signal       |  |
| Eff. Inside windows | 2 - 5%                 | signal       |  |
| Theory (BR A')      | 4%                     | signal       |  |

- Negligible effect on Uls (~1%)
- Exception is  $M_{A'} > 9 \text{ GeV/c}^2 (\sim 25\%)$

#### Dark Higgsstrahlung: data/MC



Moriond

### Z' to invisible: previous result

#### **Pilot run physics results**



#### **Systematics**

| Source                                            | Error |
|---------------------------------------------------|-------|
| Trigger efficiency                                | 6%    |
| Tracking efficiency                               | 4%    |
| PID                                               | 4%    |
| Luminosity                                        | 1.5%  |
| Background before $\boldsymbol{\tau}$ suppression | 2%    |
| $\tau$ suppression (background)                   | 22%   |
| Discrepancy in $\mu\mu$ yield (signal)            | 12.5% |
| will decrease with new data                       | £     |
|                                                   | 1     |



### Z' to invisible: systematics

NEW

- $\tau^+\tau^-(\gamma)$  almost 100% suppressed
- $\mu^+\mu^-(\gamma)$  dominates up to ~7 GeV/c<sup>2</sup>
- e<sup>+</sup>e<sup>-</sup> μ<sup>+</sup>μ<sup>-</sup> dominates for high masses



Look for bumps in  $\theta_{recoil}$  vs  $M^2_{recoil}$ 

#### **3 control samples**

μμγselection+NN studieseμselection+NN studiesee(γ)γ veto studies

low mass medium+high mass

#### **Systematics**

| Source            | Low mass | Medium mass | High mass |
|-------------------|----------|-------------|-----------|
| selections        | 2.7%     | 6.5%        | 8.3%      |
| Mass resolution   | 10%      | 10%         | 10%       |
| Background shapes | 3.2%     | 8.6%        | 25%       |
| Photon veto       | 34%      | 5%          | 5%        |
| luminosity        | 1%       | 1%          | 1%        |

Z' to invisible results



#### Vanilla model invisible Z'



Z' to invisible results

#### Vanilla model invisible Z'

Fully invisible Z'



### Z' to invisible results

- Invisible Z' with non negligible intrinsic width
- $\Gamma_{7'} = 0.1 \text{ M}_{7'}, 0.15 \text{ M}_{7}$



#### Z', S, ALP $\rightarrow \tau\tau$ : systematics

| source                   | Uncertainty (%) |  |
|--------------------------|-----------------|--|
| trigger                  | 2.7             |  |
| Particle ID              | 3.9-6.2         |  |
| Tracking                 | 3.6             |  |
| Fit bias                 | 4               |  |
| MLP selection            | 2.8             |  |
| Mass resolution          | 3               |  |
| Efficiency interpolation | 2.5             |  |
| Luminosity               | 1               |  |
| other                    | 1               |  |
| Total                    | 8.8-9.9         |  |

Negligible effect on sensitivity and Uls  $\rightarrow$  1%

NEW