

Search for Dark Matter with mono-X Signatures in CMS

Deepak Kumar, On behalf of CMS Collaboration

Indian Institute of Science, Bangalore, India

6 13 07 2022 **ICHEP 2022** International Conference on High Energy Physics

ICHEP 2022

7th July 2022

Dark matter

• Existence of dark matter (DM) known from astrophysics and cosmology.

• From Cosmology, 25% of universe is dark matter

• It rarely interacts with ordinary matter.

• Direct detection

• DM interacts with ordinary matters such as nucleons.

Indirect detection. $oldsymbol{O}$

• DM self-annihilate or decay in outer space.

Particle colliders. \bigcirc

Produce DM particles in a laboratory.

Dark Matter would not be detected directly at LHC, create a p_T^{miss} $p_{T^{miss}}$ = imbalance in the transverse momentum of all detected particles

Deepak Kumar

The multiple components that compose our univers

Dark matter detection at LHC

• mono-X search:

Standard model particle (jet, Z, γ , h, ...) recoil against missing energy.

- Tag from radiation or associated production
- Expect signal in the tail of missing energy distribution over the standard model background.
- Resonance search:
 - DM decays to standard model particle.
 - Expect signal peak in invariant mass of two visible final sate particle above the standard model background.
- Higgs portal:
 - Higgs decays to DM candidates.

Covered in previous talk by Raman

Deepak Kumar

Outline

Analyses for the talk:

- mono-J/V search
- mono-Z search
- **Dijet resonance search**
- Dilepton resonance search : <u>EXO-19-019(JHEP 07 (2021) 208</u>) -> full run2

• Full list of analyses are available here:

Public results

Deepak Kumar

: <u>EXO-20-004(arXiv:2107.13021</u>) -> full run2 : <u>EXO-19-003</u> (Eur. Phys. J. C 81 (2021) 13) -> full run2 : <u>EXO-19-012(JHEP 05 (2020) 033</u>) -> full run2

mono-J/V search

Deepak Kumar

mono-J/V search

Two major backgrounds: Z(vv)+Jets, W+Jets Backgrounds are estimated from Control regions Five control regions defined for background estimation

Deepak Kumar

Vector mediator Interpretation

Limits are set on dark matter particle production in the context of simplified models with vector mediator Comparison from direct-detection (DD) experiments

Deepak Kumar

Dark Matter@CMS, 7 July 2022

7

Axial vector mediator Interpretation

Limits are set on dark matter particle production in the context of simplified models with axial-vector mediator Comparison from direct-detection (DD) experiments

Deepak Kumar

Axial vector mediator coupling limit

Exclusion limits in the plane of m_{med} and g_{χ}

For low mediator masses, values of g_q (g_x) as low as 0.018 (0.070) are excluded

Deepak Kumar

Exclusion limits in the plane of m_{med} and g_q

Scalar and pseudo-scalar mediator Interpretations

Scalar mediator

Dark Matter@CMS, 7 July 2022

Deepak Kumar

Pseudo-scalar

Values less than 470 GeV are excluded

mono-Z(II) Search

Signature: Z(II)+MET

Model for interpretations:

- Simplified model
- ► 2HDM+a

 p_T^{miss} for simplified, m_T for 2HDM+a model

$$m_{\rm T} = \sqrt{2p_{\rm T}^Z p_{\rm T}^{\rm miss} (1 - \cos(\Delta \phi_{\ell \ell - \vec{p}_{\rm T}^{\rm miss}}))}$$

Basic selection:

- $p_{T(11)} > 25 \text{ GeV}, p_{T(12)} > 20 \text{ GeV}$
- $|m_{II} m_z| < 15 \text{ GeV}$
- p_T^{miss} > 100 GeV

Backgrounds:

- Drell-Yan, WZ, ZZ, VVV
- Dedicated Control regions to model the background

Deepak Kumar

10⁴

 10^{2}

10-1

10⁻²

 10^{-3}

Data/SM

Events / bin

10⁵

10⁴

10

10²

10

10⁻¹

3 -

2

Data/SM

Events

Vector mediator Interpretation

limit allowed for m_{med} > 870 GeV

Deepak Kumar

Compatible with direct ditection at low mass (Spin independent)

Axial vector mediator Interpretation

limit allowed for m_{med} > 800 GeV

Deepak Kumar

Best limits up to ~300 GeV (Spin dependent)

Deepak Kumar

Dijet resonance search

Bump hunt perfomed to find mediator 137 fb⁻¹ (13 TeV) dσ/dm_{jj} [pb/TeV] ۱0³ ^۲ Data CMS – Fit method χ^2 /NDF = 36.63 / 38 $|0^{2}|$ Ratio method χ^2 /NDF = 42.04 / 32 0 gg (2.0 TeV) qg (4.0 TeV) qq (6.0 TeV) 10 10^{-2} 10^{-3} 10^{-4} m_{ii} > 1.5 TeV [|η| < 2.5, |Δη| < 1.1 10^{-5} (Data-Prediction) Uncertainty 2 3 6 7 8 5 Dijet mass [TeV]

No peak is observed with respect to the SM background expectations.

Deepak Kumar

Dark Matter@CMS, 7 July 2022 Comparision with different MET based DM searches 15

Boosted dijet (77 fb⁻¹ **Dijet w/ btag** (19.7 fb⁻¹ **Dijet w/ ISR j** (18.3 fb⁻¹) **DM + j/V(qq)** (137 fb⁻¹

Dilepton resonance search

Coupling to lepton introduced

Deepak Kumar

Dark Matter@CMS, 7 July 2022

Bump hunt perfomed to find mediator

No peak is observed with respect to the SM background expectations

Interpretations

• $m_{med} < 1.92$ TeV excluded, for $m_{DM} = 0$, 1.04 TeV excluded

• Due to fluctuations in the observed limit, not all masses below that value are excluded

Deepak Kumar

Comparison

95% CL observed and expected exclusion regions in m_{Med}-m_{DM} plane for di-jet and dilepton searches

Dark Matter@CMS, 7 July 2022

Deepak Kumar

- A brief summary of very exciting dark matter searches at CMS is presented.
- No excess observed in any of the analysis.
- The limits are set on Dark matter production.
- More results are coming soon.

Deepak Kumar

Deepak Kumar

mono-photon and t/tt+DM [2016]

Deepak Kumar

Comparison

Vertical band : Results from Dijet searches Triangle shape: Results from mono-X searches

Deepak Kumar

Dark Matter@CMS, 7 July 2022

95% CL observed and expected exclusion regions in mMed-mDM plane for di-jet searches and different MET based DM searches

(Assuming coupling to lepton is zero)

Boosted dijet (77 fb⁻¹) **Dijet w/ btag** (19.7 fb^{-1}) **Dijet w/ ISR j** (18.3 fb⁻¹) **DM + j/V(qq)** (137 fb⁻¹)

